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Abstract. Nowadays, parallel computing is ubiquitous in several appli-
cation fields, both in engineering and science. The computations rely on
the floating-point arithmetic specified by the IEEE754 Standard. In this
context, an elementary brick of computation, used everywhere, is the
sum of a sequence of numbers. This sum is subject to many numerical
errors in floating-point arithmetic. To alleviate this issue, we have intro-
duced a new parallel algorithm for summing a sequence of floating-point
numbers. This algorithm which scales up easily with the number of pro-
cessors, adds numbers of the same exponents first. In this article, our
main contribution is an extensive analysis of its efficiency with respect
to several properties: accuracy, convergence and reproducibility. In order
to show the usefulness of our algorithm, we have chosen a set of represen-
tative numerical methods which are Simpson, Jacobi, LU factorization
and the Iterated power method.

Keywords: floating-point arithmetic, accurate summation, numerical
accuracy, numerical methods, convergence, reproducibility.

1 Introduction

Scientific computing relies heavily on floating-point arithmetic as defined by the
IEEE754 Standard [1,8,17]. It is therefore sensitive to round-off errors, and this
problem tends to increase with parallelism. In floating-point computations, in
addition to rounding errors, the order of the computations affects the accuracy of
the results. For example, let us calculate in IEEE754 single precision (Binary32)
the sum of three values x, y and z, where x = 109, y = −109 and z = 10−9. We
obtain

((x+ y) + z) = ((109 − 109) + 10−9) = 10−9, (1)

(x+ (y + z)) = (109 + (−109 + 10−9)) = 0. (2)

Equations (1) and (2) show that for the same mathematical expression, a sum
of three operands, different orderings of the computations yield different results.
In the floating-point arithmetic, we note that, for the same values of x, y and z,



and for the same arithmetic operation, we obtain two different results because
of parsing the three values differently. In fact, many summation algorithms exist
in the literature [5,6,13,16,18,21,22,23]. Some of them are based on compensated
summation methods [13,16,18,21,22,23] with or without the use of the error-free
transformations to compute the error introduced by each accumulation. Others
are based on manipulating the exponent and/or the mantissa of the floating-
point numbers in order to split data before starting computations [2,5,6].

In the same context, we proposed a new algorithm for accurately summing
n floating-point numbers. This algorithm performs computations only within
working precision, requiring only an access to the exponents of the values. The
idea is to compute the summands according to their exponents without increas-
ing the complexity. More precisely, the complexity of the algorithm is linear in
the number of elements, just like the naive summation algorithms. The main con-
tribution of this article is to show that our algorithm improves simultaneously
the parallel execution time, the reproducibility and convergence of computations
through the increase of their numerical accuracy as follows:

– We show that we improve the numerical accuracy of computations of MPI
implementations of Simpson’s rule and the LU factorization method.

– We show that we accelerate the convergence of Jacobi’s method and the
iterated power method compared to versions of these methods which use
a simple summation algorithm. Past results [4] show that improving the
accuracy of computation also leads to accelerate the convergence of iterative
sequential algorithms. Our motivation is therefore to parallelize these two
methods focusing first on accuracy and obtaining, as a side effect, a better
convergence.

– We focus on reproducibility in the context of parallel summation. Indeed,
the combination of the non-associativity of floating-point operations like ad-
dition and computations done in parallel may affect reproducibility. The in-
tuitive solution used to ensure reproducibility is to determine a deterministic
order of computation. Another method is based on reduction or elimination
of round-off errors, i.e. by improving the numerical accuracy of computations
that we will further see in this article.

We will see further in this article that our summation algorithm described
in Section 2.3 improves the numerical accuracy similarly to Demmel and Hida
algorithms [6] introduced in Section 2.2 without increasing the cost of complexity.
In fact, Demmel and Hida algorithms [6] have a complexity of O(n log n) thanks
to the sorting step compared to our summation algorithm where no sorting
being performed and the access to the data to be summed is done only once
and, consequently, the cost of our algorithm is O(n).

The rest of the paper is organized as follows. Section 2 recalls elements
of floating-point arithmetic and the related work on some existing summation
methods proposed to improve the numerical accuracy of computations. We also
present our parallel summation algorithm introduced in [2]. Section 3 focuses on
the improvement of numerical accuracy, based on two experiments, Simpson’s
rule and a LU factorization. Section 4 focuses on the impact of accuracy on the
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convergence speed. It is based on experiments on Jacobi’s method and the It-
erated Power Method. Last, we focus on reproducibility in Section 5, based on
two experiments: the Simpson’s rule and a matrix multiplication. We conclude
in Section 7.

2 Background

This section introduces some useful notions used in the reminder of this article.
Section 2.1 provides some background of the floating-point arithmetic as de-
fined by the IEEE754 standard [1,8,17]. Section 2.2 discusses related work. Our
algorithm introduced in [2], is presented in Section 2.3.

2.1 Floating-Point Arithmetic

Following the IEEE754 Standard, a floating-point number x in base β is defined
by

x = s ·m · βexp−f+1 (3)

where

– s ∈ {−1, 1} is the sign,
– m = d0d1....df−1 is the mantissa with digits 0 ≤ di < β, 0 ≤ i ≤ f − 1,
– f is the precision,
– exp is the exponent with expmin ≤ exp ≤ expmax.

The IEEE754 Standard defines binary formats with some particular values for
f , expmin and expmax which are summarized in Table 1. Moreover, the IEEE754
Standard defines four rounding modes for elementary operations over floating-
point numbers. These modes are towards +∞, towards −∞, towards zero and
towards nearest, denoted by ◦+∞, ◦−∞, ◦0 and ◦∼, respectively.

The behavior of the elementary operations � ∈ {+,−,×,÷} between floating-
point numbers is given by

v1 �◦ v2 = ◦(v1 � v2) (4)

where ◦ denotes the rounding mode such as ◦ ∈ {◦+∞, ◦−∞, ◦0, ◦∼}. By Equa-
tion (4), we illustrate that, in floating-point computations, performing an ele-
mentary operation �◦ with rounding mode ◦ returns the same result as the one
obtained by an exact operation �, then rounding the result using ◦. The IEEE754
Standard also specifies how the square root function must be rounded in a simi-
lar way to Equation (4) but does not specify the round-off of other functions like
sin, log, etc. In this article, without loss of generality, we consider that β = 2.
We assume the rounding mode to the nearest. In floating-point computations,
absorption and cancellation may affect the numerical accuracy of computations.
An absorption occurs when adding two floating-point numbers with different or-
ders of magnitude. The small value is absorbed by the large one. A cancellation
occurs when two nearly equal numbers are subtracted and the most significant
digits cancel each other.
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Format #total bits f bits exp bits expmin expmax

Half precision 16 bits 11 5 −14 +15
Single precision 32 bits 24 8 −126 +127
Double precision 64 bits 53 11 −1122 +1223

Quadruple precision 128 bits 113 15 −16382 +16383

Table 1: Binary formats of the IEEE754 Standard.

2.2 Related Work

Summation of floating-point numbers is one of the most basic tasks in nu-
merical analysis. Research work has focused on improving the numerical accu-
racy [5,6,13,16,18,21] or reproducibility [7] of the computations involving sum-
mations. There are many sequential and parallel algorithms for this task. Surveys
of them being presented in [11,12]. Floating-point summation is often improved
by compensated summation methods [13,16,18,21,22,23] with or without the use
of error-free transformations to compute the error introduced by each accumu-
lation. We detail some of the compensated summation algorithms further in this
section. The accuracy of summation algorithms can also be improved by manip-
ulating the exponent and the mantissa of the floating-point numbers in order to
split data before starting computations [5,6]. This approach is the one employed
by our algorithm and it is explained in details in Section 2.3.

Compensated summation methods: The idea is to compute the exact round-
ing error after each addition during computations [13]. Compensated summation
algorithms accumulate these errors and add the result to the result of the sum-
mation. The compensation process can be applied recursively yielding cascaded
compensated algorithm. Malcolm [16] describes cascading methods based on the
limited exponent range of floating-point numbers. He defines an extended preci-
sion array ei where each component corresponds to an exponent. To extract and
scale the exponent, Malcolm uses an integer division, without requiring the divi-
sion to be a power of 2. If the extended precision has 53+k bits in the mantissa,
then, obviously, no error occurs for up to 2k summands and

∑n
i=1 pi =

∑n
i=1 ei.

The summands pi are added with the respect to decreasing order into the array
element corresponding to their exponent. Note that such an algorithm requires
twice as much running time compared to our algorithm.

Rump et al. [18,21,22] proposed several algorithms for summation and dot
product of floating point numbers. These algorithms are based on iterative appli-
cation of compensations. An extension of the compensation of two floating-point
numbers to vectors of arbitrary length is also given and used to compute a result
as if computed with twice the working precision. Various applications of com-
pensated summation method have been proposed [9,10]. Thévenoux et al. [24]
implement an automatic code transformation to derive a compensated programs.

Also, we mention the accurate floating-point summation algorithms intro-
duced by Demmel and Hida [5,6]. Given two precision f and F with F > f , Dem-
mel and Hida’s algorithms use a fixed array accumulators A0, ....AN of precision
F for summing n floating-point numbers of precision f such that S =

∑n
i=1 si.
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These algorithms require accessing the exponent field of each si to decide to
which accumulator Aj to add it. More precisely, each Aj accumulating the sum
of the si where e leading bits are j. Then, these Aj are sorted in decreasing
order to be summed. Consequently, complexity of these algorithms is equal to
O(n log n), because of the sorting step.

Parallel approaches: In addition to the existing sequential algorithms, many
other parallel algorithms have been proposed. Leuprecht and Oberaigner [15]
describe parallel algorithms for summing floating-point numbers. The authors
propose a pipeline version of sequential algorithms [3,20] dedicated to the com-
putation of exact rounding summation of floating-point numbers. In order to
ensure the reproducibility, Demmel and Nguyen [7] introduce a parallel floating-
point summation method based on a technique called pre-rounding to obtain
deterministic rounding errors. The main idea is to pre-round the floating-point
input values to a common base, according to some boundary, so that their sum
can later be computed without any rounding error. The error depends only on
both input values and the boundary, contrary to the intermediate results which
depend on the order of computations.

2.3 Accurate Summation Algorithm

In this section, we describe our summation algorithm introduced in [2] for accu-
rately summing n floating-point numbers. Our algorithm enjoys the following set
of properties. First, it improves the numerical accuracy of computations without
increasing the cost of complexity compared to the naive algorithm. Second, it
performs all the computations in the original working precision without using
accumulators of higher precision. Last, using this new algorithm, we increase the
numerical accuracy and, as a side effect and shown in the next sections, we also
improve the execution time and reproducibility of summation.

For the algorithm detailed hereafter, we assume that we have P processors
and n summands (with n � P ). We assign n/P summands to each proces-
sor. For computing the sum S =

∑n
i=1 si, ∀0 ≤ i < P processor i computes∑(i+1)×n/P−1

j=i×n/P sj . Then a reduction – a last sum – is done to compute the final

result. First of all, Algorithm 1 allocates an array called sum by exp which is
created and initialized at 0 for all its elements before starting the summations.
The array sum by exp has exp max−exp min+1 elements. Let us assume that
the exponents of summands range from exp min to exp max. The main idea is
to sum all the summands whose exponent is 2i in the cell sum by exp[i+ bias]
such as bias = −exp min, this avoids most absorptions while avoiding to sort
explicitly the array. Let exp (si) denote the exponent of si in base 2. For com-
puting the sum S =

∑n
i=1 si, each value si is added to the appropriate cell

sum by exp[exp si + bias] according to its exponent. For parallelism, each pro-
cessor has an sum by exp array to sum locally. In order to obtain its local final
result, we add these values in increasing order. Once the final local sums are
computed, a reduction is done and the processor receiving the result of the re-
duction gets the total sum. Figure 1 summarizes the process of computing the
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Algorithm 1 Accurate summation with local sum at each processor

1: Initialization of the array sum by exp
2: total sum=0.0
3: for i=0 : p row do . p row: rows number of each processor
4: exp s i=getExp(s[i])+bias . getExp: function used to compute exponent
5: in base 2
6: sum by exp[exp s i]=sum by exp[exp s i]+s[i]

7: local sum=0.0 . Summing locally in order of increasing exponents
8: for i=0 to exp max-exp min+1 do
9: local sum=local sum+sum by exp[i]

. Total sum by processor 0
10: MPI Reduce(&local sum, &total sum, 1, Mpi float, Mpi sum, 0,Mpi comm world)

sum by Algorithm 1. To emphasize the property regarding the cost of complexity
mentioned above, we note that the cost of Algorithm 1 is O(n), no sorting being
performed and the access to the data to be summed being done only once.

s_0 s_n-1

S

s_i

getExp(s_i)+bias

exp_s_i

.

.

.. . ... .. . .. . ... .. .

local_sum_P0 local_sum_P1 local_sum_P2

+ +

The computation

 
of local sums

The computation
of global sum 
by processor 0

sum_by_exp_P2

sum_by_exp[exp_s_i]+=s_i

Processor 0 Processor 1 Processor 2

sum_by_exp_P1

sum_by_exp_P0

Summation 
by exponents
in each
processor

Fig. 1: Accurate summation algorithm approach.

Let us mention that another refined implementation of Algorithm 1 has been
proposed in [2]. This second implementation shares a common idea with Algo-
rithm 1 which is related to the way that the summands are added and differs
from Algorithm 1 in that the final sum is not carried out in the same way.
The advantage of this other implementation is that the summation results are
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more accurate than those of Algorithm 1. Concerning its drawback, the cost
of complexity will be higher in the constant of the O(n) while being linear. In
the following sections, we evaluate the simpler and most cost-effective version
of Algorithm 1 regarding accuracy, convergence speed for iterative schema and
reproducibility. We note that our implementations are done in the C program-
ming language with MPI, compiled with MPICC 3.2, and made them run on
an Intel i5 with 7.7 Go memory. Let us also note that for our experiments, we
report numerical values relying on thousands separators, typesetting 1234567.89
as 1, 234, 567.89.

3 Numerical Accuracy

In this section, we first evaluate the numerical accuracy of our algorithm intro-
duced in Section 2.3. Secondly, we address the issue of the compromise between
numerical accuracy and running time of the studied algorithms. We take into
consideration two examples, namely Simpson’s rule and the LU factorization
method. For each example, we have implemented two parallel versions, using
MPI [19]. The first one, called original program uses simple sums: to sum n val-
ues x1....xn it computes (((x1 + x2) + x3) + ....+ xn). The second program uses
Algorithm 1 and is called, the accurate program. The experiments are carried
out for several numbers of processors.

3.1 Simpson’s Rule

Our first example computes the integral C×
∫ b

0
f(x)dx of mathematical functions

f using Simpson’s rule. The Simpson’s rule is a numerical method that approxi-
mates the value of a definite integral of a function f using quadratic polynomials.
We measure the efficiency of our algorithm on this example by computing the
absolute errors between both the results of the original and accurate programs
with respect to the analytical solution of the integral, as shown in Figure 2. We
integrated the following functions C × cos(x), C × (1/x2 + 1) and C × tanh(x)
with C = 106, and b ranging in [2; 5]. The number of processors P ranges in [2; 8].
Each processor computes a part of the integral. For the first experimentation,
let us take the function C × cos(x) as an example. As it is observed in Figure 2,
the absolute errors of the original program are larger than those of the accurate
program of several order of magnitude. To better illustrate, let us consider the
value 3 of the x-axis corresponding to the upper bound of the integral. We notice
that the absolute errors of the original program are 392, 700.198, 411, 541.22875
and 414, 048.5725 for P = 2, P = 4 and P = 8, respectively. In contrast to the
accurate program where the absolute errors computed for the same example are
3, 238.3225, 32, 419.6975 and 77, 805.5725, respectively. In the same way, we note
that the results of the second function C × (1/x2 + 1) and the third function
C × tanh(x) are similar to those of the first function C × cos(x). Moreover, the
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Fig. 2: The absolute errors between the original program and the accurate one for
the integral computation of three different functions (C × cos(x), C × (1/x2 + 1)
and C × tanh(x)) with the corresponding analytical result by varying the upper
bound of the integral b = 2, 3, 4, 5.

results of the C × tanh(x) function show that the results computed by the orig-
inal Simpson’s rule performed on a large upper bound of the integral are those
which have larger absolute errors. Indeed, for P = 2 the absolute errors com-
puted for the upper bound equal to 2,3,4 and 5 are 621, 315.3125, 1, 253, 797.375,
3, 166, 450.745625 and 4, 130, 976.360625 respectively.

The second experiment measures the execution time (in seconds) of the orig-
inal program, accurate program and another program based on sorting. Let us
consider the third function C× tanh(x) for P = 8, Figure 3 displays the running
time in seconds taken by each program (original program, accurate program
and summation by sorting) to compute the integral of this function. The results
show that the summation program based on sorting like Demmel and Hida algo-
rithms [5] need more time to compute the integral of the function C × tanh(x).
Contrarily to the summation by sorting program, our algorithm called accurate
program requires much less time and a little more than the original program. For
example, to compute the integral of the function C × tanh(x) for b = 2 it takes
24s using the summation by sorting program, while this computation takes only
0.37s and 1.08s using the original and the accurate programs, respectively. It is
well known that the summations based on sorting performed on the summands
before computations are more accurate but these computations take more time
(49s for b = 5) to performed than our accurate algorithm (1.15s for the same
value of b) where no sorting is performed.
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Fig. 3: Execution time of the original program, accurate program and summation
algorithm by sorting for the integral computation of the function C × tanh(x).

3.2 LU Factorization

Our second example is the parallel LU factorization method. This method con-
sists in rewriting a matrix A as the product of a lower triangular matrix L and
an upper triangular matrix U such that A = LU . The LU factorization method
is a very common algorithm which can be used e.g. to solve linear systems or
to compute the determinant of a matrix. In the parallel case, the matrix A is
divided into blocks of rows and each processor performs its computations on a
given block. For our experiments we generated square matrices of various dimen-
sions n ∈ [200, 800] with increment of 100. These matrices contain values chosen
to introduce ill-conditioned sums [14]. In our case, we consider 30% of large
values among small and medium. By small, medium and large values we mean
respectively, of the order of 10−7, 100 and 107. This is motivated by the IEEE754
single precision arithmetic. Also, we take vectors x with the same proportions
of large values among small and medium as for the matrices.

The first experimentation consists of comparing the numerical accuracy of the
LU factorization carried out using the original and accurate programs. Let us
consider a matrix A and vector x. We start by computing the solution vector
given by Ax = b. This vector is considered as the exact solution. Next, we apply
the original LU factorization program to the matrix A with P = 16 processors in
order to obtain Lorig and Uorig. In the same way, we factorize the matrix A using
the accurate LU factorization into Lacc and Uacc. We compare the new vector
solutions borig = Lorig ×Uorig × x and bacc = Lacc ×Uacc × x with the exact so-
lution b. Figure 4 represents the absolute errors between the computed solutions
after factorization and the exact solution. These experiments show significant
improvements: while the difference between the absolute errors of the original
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Fig. 4: The absolute errors of the LU factorization by the original and accurate
algorithm for matrix of different sizes.

and the accurate program are already up to an order of 105 for our smallest
matrices (n = 200), it reaches up to an order of 107 for large ones (n = 600).
More precisely, for n = 200 the absolute errors are 452, 1984 and 445, 6448 for
the original and the accurate LU factorization, respectively. We obtain 996, 1472
and 655, 3600 for n = 600. Thus, we conclude from this experimentation that
the accurate program shows its efficiency in terms of numerical accuracy when
we handle large matrices, i.e. when various types of absorptions and cancellation
have been introduced.

By the second experimentation, we want to show the running time taken by
each Lu factorization program for a set of matrices of size varying from 200 to 800
with P = 16. Figure 5 summarizes the execution time taken by each algorithm
(original program, accurate program and summation by sorting) to compute the
LU factorization. We notice in Figure 5 that the summation algorithm based
on sorting requires much more time to compute the LU factorization. Besides,
accurate program needs much less time than summation algorithm by sorting
and a little more than the original algorithm. To better illustrate, let us take a
matrix of size n = 300. We remark that the execution takes only 66s and 90s
with original program and accurate program, respectively, while the summation
by sorting program requires 224s for the same computation. Let us also remark
that the running time obtained for the summation by sorting program for the
large matrices are many much larger than those obtained for the smallest one.
In fact, the execution time increase from 101s to approximately 2h for matrices
sizes 200 and 800, respectively, using the summation algorithm by sorting.
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4 Convergence of Iterative Methods

In this section, we focus on the impact of accuracy on the number of iterations
required by numerical iterative methods to converge. For our experiments, we
consider two iterative methods: Jacobi’s method and Iterated Power method. As
in the previous section, we implemented two versions of the same algorithm, the
original one and our accurate version. We observed the impact on the conver-
gence, comparing their respective number of iterations.

4.1 Jacobi’s Method

The Jacobi’s method is a well known numerical method used to solve linear
systems of the form Ax = b. In this method, an initial guess, an approximate
solution x0, is selected and is iteratively updated until finding the solution xk of

the linear system. More precisely, this method iterates until |x(k+1)
i − xki | < ε.

In our case, the parallelization of the Jacobi’s method is done according to the
row-wise distribution. Jacobi’s method is stable whenever the matrix A is strictly
diagonally dominant, i.e. its satisfies the property of Equation (5).

∀i ∈ 1, . . . , n, |aii| >
∑
j 6=i

|aij |. (5)

We examine the impact of accuracy on the convergence speed for the systems
of sizes 10 and 100. While the chosen systems were stable with respect to the
sufficient condition of the stability given by Equation (5), they are close to un-
stability with ∀i ∈ 1, . . . , n, |aii| ≈

∑
j 6=i |aij |. Figures 6 represents the difference
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between the number of iterations of the original and the accurate programs.
Let us take the first system of size n = 10. We notice that for various values
of ε varying from 10−2 to 10−5, the convergence speed in terms of number of
iterations increases from 59 to 2, 029. For the second system when n = 100, we
remark that the number of iterations reduced are larger than those computed for
the system n = 10 for the same values of ε. For instance the number of iterations
reduced for ε = 10−2 and ε = 10−5 are 861 and 10, 946, respectively. From these
two examples, we conclude that the smallest values of ε are those which have a
large difference between the original and the accurate programs in terms of the
number of iterations. Also, for a given value of ε, the accurate program shows its
efficiency on the convergence speed on large matrices compared to small ones.
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Fig. 6: Difference between number of iterations necessary for the original and the
accurate programs to achieve the convergence of the Jacobi method.

4.2 Iterated Power Method

The Iterative Power method is particularly useful for estimating numerically
the largest eigenvalue and its corresponding eigenvector. The idea is to fix an
arbitrary initial vector x(0) which contains a single non-zero elements. Then, we
build an intermediary vector y(1) such that Ax(0) = y(1). In order to obtain
the vector x(1), we renormalize y(1) so that the selected component is again
equal to 1. For the next iteration, we use x(1) as a selected vector. The iterative
process is repeated until convergence. We assume that, the parallelization of the
Iterated Power method is done according to the row-wise distribution. Let us

12



take a square matrix A of the form:

A =


d a12 · · · a1j
a21 d · · · a2j
...

...
ai1 ai2 · · · d


We assume that aij = 0.01 and d ∈ [300.0, 500.0] following the methodology
introduced in [4]. Figure 7 summarizes the difference between the number of
iterations of the original and the accurate Iterated Power method. As it is ob-
served in Figure 7, the accurate program accelerates the convergence speed of
the Iterative Power method by reducing the number of iterations needed to con-
verge. Indeed, for the matrix size n = 100 with various values of the diagonal
and using P = 4 we show that the number of iterations reduced increases from
205 to 340.
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Fig. 7: Difference between number of iterations of original and accurate Iterated
Power method (n = 100, d ∈ [300, 500] with increment of 20).

5 Reproducibility

In this section, we aim at evaluating the efficiency of Algorithm 1 on the im-
provement of reproducibility. Figures 8 and 9 give results of reproducibility for
Simpson’s rule and Matrix Multiplication, respectively. During our experiments,
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we consider the original and the accurate programs of each method. We compare
the results of each of them on several processors and their respective results with
only one processor.

5.1 Simpson’s Rule

Let take again the example of Simpson’s rule already introduced in Section 3. In
practice, improving the numerical accuracy often improves reproducibility. We
measure the efficiency of our algorithm on this example by computing the abso-
lute errors between both the results of the original and the accurate programs
by varying the number of processors from 2 to 8 and their respective program
with only one processor, as shown in Figure 8.
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Fig. 8: The reproducibility of the integral computations using Simpson method
of the original program and the accurate one depending on the number of pro-
cessors.

Let us consider several mathematical functions C × cos(x), C × (1/x2 + 1) and
C × tanh(x) with C = 106, and b ranging in [2; 5]. For example, for f(x) =
C × cos(x) with P = 2, the results show that the absolute errors of the original
program are larger (between 105, 553.117187 and 703, 687.4375) than those of the
accurate program (between 47, 938.1875 and 195, 067.296875) as it is observed in
Figure 8. Also, we can observe in Figure 8 that the results of integrals computed
by the original program performed on a large number of processors P = 8 are
those which have a larger absolute errors. As an example, the absolute errors
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computed for the function C × tanh(x) with P = 8 are between 233, 122.109375
and 3, 637, 171.1875 while the absolute errors computed for the same example
with P = 2 are between 87, 960.921875 and 1, 221, 541.8750.

5.2 Matrix Multiplication

The computation of the matrix-matrix multiplication based on floating-point
addition and multiplication which are non-associative operations is prone to
accuracy problems. Moreover, the problem of non-determinism of floating-point
computations on different or even similar parallel architectures, reproducibility
of the results is not guaranteed. In this context, we address the problem of
reproducibility in the case of matrix multiplication.
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Fig. 9: The reproducibility of the matrix-matrix multiplication for different size
of matrices.

To parallelize this method, we assume that each matrix is divided into sub-
matrices of the size n/P . For our experiments, we consider square matrices of
various dimensions n ∈ [200, 800] with increment of 200. These matrices contain
a variety of floating-point values chosen with difference in magnitude. More
precisely, they are made of 50% of large values (of the order of 107) among small
(of the order of 100) and medium (of the order of 10−7). Figure 9 represents
the percentage of accuracy computed between the original and the accurate
programs carried out using P = 8 and their respective result using only one
processor. The results show that for different matrix sizes, the percentage of
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accuracy of the original program ranges from 3% to 13%. Contrarily to the
original program, the percentage linked to the accurate program described in
this article is equal to 100% for each matrix which confirms the usefulness of
Algorithm 1.

6 Future Work

In a future work, we would like to refine our algorithm by adding a test phase
after line 4 of Algorithm 1, i.e. before adding the value si to the appropriate
cell of the array sum by exp. More precisely, we check before any summation if
the computed exponent exp (si) is equal to the exponent of its appropriate cell
sum by exp[exp s i]. Indeed, if we have a large set of values to be summed with
the same exponent, the result produced can have a larger exponent than the
initial one. Therefore, a loss of accuracy can be caused during the computations
of the local sums.

An interesting perspective consists in feeding our algorithms [2] with a static
analysis. Our idea is to rely on static analysis to detect the exponents range
of a given set of values that will be summed. This step will allow us to have
the size of the array sum by exp allocates by Algorithm 1, so instead of having
exp max−exp min+1 elements we will have max−min+1 elements as shown in
Figure 10. Once this range is accurately computed, one can use our summation
algorithm and obtain more accurate floating-point results.

s_0 s_n-1

S

s_i

getExp(s_i)+bias= exp_s_i

Static Analysis

Processor 0 Processor 1 Processor 2

Processor 1

.

.

 max-min+1 elements

sum_by_exp_P1

exponents range
    [min,max]

Fig. 10: Diagram of sum computations with static analysis.
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Further, it will be interesting to explore the impact of our algorithms in the
context of neural networks. Our goal is to improve the numerical accuracy of
computations by using the accurate summation algorithms [2] as a replacement
for their summation algorithms. For example, let us consider the backpropaga-
tion algorithm used for classification problems. The main purpose of the back-
propagation approach is to train the weights of an input signal in a multilayer
feed-forward neural network to produce an expected output signal referenced
in a learning database. As a first step, we forward-propagate an input to com-
pute an output. Next, we compute the error between the computed output and
a known expected output. Finally, we back-propagate this error to modify the
initial value of the state. In the example above, it is well known that if we use
the naive summation algorithm to update the neurons weights, computations
may involve scalars of different orders of magnitude, as a result, a possible lack
of accuracy. This is what, we want to improve by our contribution.

7 Conclusion

In this article, we have focused on the impact of accuracy on both the repro-
ducibility and convergence speed of numerical algorithms. The originality of this
article is to study the impact that a new accurate summation algorithm has
on the accuracy of numerical methods involving sums, they also show that our
algorithms do not increase the cost of complexity. In this work, we have experi-
mented our algorithm on several representative numerical methods by comparing
the original and the accurate programs of each of them. The experiments show
the usefulness of our algorithm on the improvement of reproducibility. Also, the
results obtained show the efficiency of our algorithm to reduce the number of
iterations required by numerical iterative methods to converge. More precisely,
the accurate program converge more quickly than the original one without loss
of accuracy.
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20. Michèle Pichat. Correction dune somme en arithmetique a virgule flottante. Nu-
mer. Math., 19(5):400406, October 1972.

21. Siegfried Rump. Ultimately fast accurate summation. SIAM Journal on Scientific
Computing, 31(5):3466–3502, 2009.

22. Siegfried Rump and Takeshi Ogita. Fast high precision summation. Nonlinear
Theory and Its Applications, IEICE, 1, 01 2010.

23. Siegfried Rump, Takeshi Ogita, and Shin’ichi Oishi. Accurate floating-point sum-
mation part I: faithful rounding. SIAM J. Scientific Computing, 31(1):189–224,
2008.
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