
Precision Tuning and Internet of Things
Dorra BEN KHALIFA

Laboratory of Mathematics and Physics LAMPS
University of Perpignan Via Domitia

52 Av. P. Alduy, 66100, Perpignan, France
dorra.ben-khalifa@univ-perp.fr

Matthieu MARTEL
Laboratory of Mathematics and Physics LAMPS

University of Perpignan Via Domitia
52 Av. P. Alduy, 66100, Perpignan, France

matthieu.martel@univ-perp.fr

Abstract—Numerical precision / memory / energy trade-off is
a more and more important concern in the design of future
computing systems at all scales. In practice, programmers tend
to use the highest precision available in hardware which is
the IEEE754 double precision [1] on current processors. This
approach can be too costly in terms of computing time, memory
transfer and energy consumption. To overcome this difficulty,
we present, in this article, a floating-point precision tuning tool
called, POP: Precision OPtimizer, which integrates a static pro-
gram analysis to determine the minimal precision on the inputs
and the intermediary results of a program performing floating-
point computations in order to ensure a desired accuracy on
the outputs. Our approach combines a forward and a backward
static analysis done by abstract interpretation. Next, our analysis
is expressed as a set of linear constraints easily checked by an
SMT solver. Precision tuning already has applications in many
domains and, in this article, we show its usefulness in a new,
unexplored domain, namely for Internet of Things applications.
We show how it can be important in terms of memory and
energy concerns. A prototype implementing our analysis has been
realized and experimental results are presented on numerical
computations performed binary an accelerometer comparable to
what we can find in smartphones to convert brute sensor data
into movements.

Index Terms—Precision tuning, Floating-point arithmetic, In-
ternet of Things, Applications, Static analysis

I. INTRODUCTION

The use of floating-point arithmetic, whose specification is
given by the IEEE754 Standard [1], to carry out real arithmetic
on computers is almost standard practice [2]. Nowadays, with
the wide availability of processors with hardware floating-
point units, e.g. for smartphones or other internet of things
(IoT) devices, many applications rely heavily on floating-point
operations. In practice, these applications such as the critical
command systems for automotive, aeronautic, space, etc.,
have stringent correctness requirements and their failure have
catastrophic consequences on human life [3]. To minimize
the chance of problems, developers are likely to use the
highest precision available in hardware throughout the whole
program without an extensive background in numerical accu-
racy. Despite the fact that the results will be more accurate,
this increases significantly the application runtime, bandwidth
capacity and the memory and energy consumption of the
system. Furthermore, we will concentrate, in this work, on an
important difference relating the terms precision and accuracy
that are often confused, even though they have significantly
different meanings. Here, we call precision a property of

a number format and refers to the amount of information
used to represent a number. Better or higher precision means
more numbers can be represented, and also means a better
resolution. Otherwise, the term accuracy denotes how close
a floating-point computation comes to the real value [4]: a
bound on the absolute error |x− x̂| between the represented x̂
value and the exact value x that we would have in the exact
arithmetic. This present work address the problem of deter-
mining the minimal precision on the inputs and intermediary
results of a program performing a floating-point computations
that guarantees a desired accuracy of the outputs values.
Consequently, it is possible to save memory, reduce CPU
usage and use less bandwidth for communications. In addition,
our precision tuning technique could be easily transposed to
the case of fixed-point arithmetic for the case of IoT devices
which do not have floating-point units. We believe it possible
and promising to adapt the precision tuning technique to
applications of Internet of Things because the type of problem
of energy consumption and memory are widespread in this
area. In fact, The devices of Internet of things are powered
by an independent power supply like battery and energy
harvester, which provide limited energy [5]. Consequently,
batteries require changing and replacement due to their short
lifetime. Also, the IoT devices memory is used to store data
and performance tasks, therefore, consistent memory access
occurs during the operation of the IoT device. Thus, the energy
savings associated with memory access reduce the average
power consumption of IoT devices. Nevertheless, the POP tool
applies the mixed-precision on the floating-point programs for-
mats. We denote by mixed-precision computing the approach
of combining different precisions for different floating-point
variables (contrarily to the uniform precision). The common
objective of existing approaches, which differ from each other
in their way of determining accuracy either by dynamic or
static methods [6] [7] [8] [9], is to compute approximations
of the errors on the outputs of a program depending on the
initial errors on the inputs and the roundoff of the arithmetic
operations performed during the execution [4]. POP takes as
input a program annotated by the user accuracy expectation
and it implements a static forward and backward error analysis
which are two popular paradigms of error analysis, done by
abstract interpretation [10]. The forward analysis is classical.
It examines how errors are magnified by each operation aiming
to determine the accuracy on the results. Next, the backward

analysis takes in consideration the user requirement denoting
the final accuracy wanted on some control points of the
outputs and the results of the forward analysis. Obviously,
it is a complementary approach that starts with the computed
answer to determine the exact floating-point input that would
produce it in order to satisfy the desired accuracy. As could
be expected, the forward and the backward analysis can be
handled iteratively to refine the results until a fixed-point is
reached. Then, the forward and backward transfer functions are
expressed as a set of linear constraints made of propositional
logic formulas and relations between integer elements only.
After, these constraints will be solved by an SMT solver
(we use z3 in practice [11]). In previous work, we have
described the improvement of our approach compared to [4].
The contribution revolved around reexamining a function ι
considered as the carry bit that can occur throughout floating-
point computations. A too conservative static analysis would
consider that a carry bit can be propagated at each operation
which corresponds to ι = 1 which is very costly if we perform
several computations at a time. That’s why, we proved that it
is crucial to use the most precise function ι.

This work focuses on experimenting the tool on examples
issued from different fields specially the Internet of Things
and finding a trade-off between precision and energy.

The reminder of the article is organized as follows. Section
2 introduces briefly some elements of floating-point arithmetic
and also it deals with presenting related work of some existing
tools. Section 3 introduces our tool POP and its acitecture.
The experimental examples and results are detailed in Section
4 before concluding in Section 5.

II. BACKGROUND

In this section, we provide some background on floating-
point arithmetic helpful to understand the rest of the article in
Section II-A. Also, we will discuss the importance of mixed-
precision tuning and we will finish by presenting some related
work in Section II-B.

A. Basics on Floating-point Arithmetic

The IEEE754 Standard formalizes a binary floating-point
number x in base β (generally β = 2) as a triplet made of a
sign, a mantissa and an exponent as shown in Equation (1),
where s ∈ {-1,1} is the sign, m represents the mantissa, m =
d0.d1...dp−1, with the digits 0 ≤ di < β, 0 ≤ i ≤ p − 1, p
is the precision (length of the mantissa) and the exponent e ∈
[emin, emax].

x = s.m.βe−p+1 (1)

The IEEE754 Standard specifies some particular values for
p, emin and emax [12]. Also, this standard defines binary
formats (with β = 2) which are described in Table I. More-
over, the IEEE754 Standard defines four rounding modes for
elementary operations over floating-point numbers which are
[12]: towards +∞, towards −∞, towards zero and towards
the nearest denoted by ↑+∞, ↑−∞, ↑0 and ↑∼, respectively.
Henceforth, we introduce two functions ufp and ulp which

Format Name Mantissa size
(p - 1) Size of e emin emax

Binary16 Half precision 10 5 -14 +15

Binary32 Single precision 23 8 -126 +127

Binary64 Double precision 52 11 -1122 +1223

Binary128 Quadruple precision 112 15 -16382 +16383

TABLE I: Basic binary IEEE754 formats

compute the unit in the first place and the unit in the last
place respectively. These functions are used to describe the
error propagation across the computations [4]. Equation (2)
presents the ufp of a number x

ufp(x) = min{i ∈ Z : 2i+1 > x} = blog2(x)c (2)

Noting that several definitions of ulp exist in literature [13]. We
present the ulp of a floating-point number with p significand
size as shown

ulp(x) = ufp(x)− p+ 1 . (3)

B. Mixed-Precision Tuning and Related Work
a) Mixed-Precision Tuning challenges and Related

Work: Past research [14] [15] [8] has shown that by using a
combination of 32-bit and 64-bit floating-point arithmetic, the per-
formance of many dense and sparse linear algebra algorithms can
be significantly enhanced while maintaining the 64-bit accuracy of
the resulting solution. Also, the twice number of single precision
data elements can be stored at each level of the memory hierarchy
(register file, the set of caches and the principal memory) because of
its compact representation and then it increases crucially the number
of cache and consumes more bandwidth between the memory levels.
For example, taking a simple arithmetic expression (u+v)÷(w−y),
then, carrying out the division expression in a single precision and
the rest in double precision would be the best choice [8]. In order to
obtain the best floating-point formats as a function of the expected
accuracy on the results, many efforts must be presented. We will
present these approaches according to their static or dynamic methods
of analysis.
• Static Anaysis Darulova and Kuncak [6] proposed a static anal-

ysis method to compute errors propagation. If their computed
bound on the accuracy satisfies the post-conditions then the
analysis is run again with a smaller format and it stops until
finding the best format. Contrarily to our proposed tool, all their
values have the same format (uniform-precision). Also, there are
some recent efforts in rigorous floating-point error estimation
which are based on combinations of abstract interpretation and
conservative range calculation. In this context, Chiang et al.
[2] have proposed a new method which allocate precision to
the terms of only arithmetic expressions. Whereas they need to
solve a quadratically constrained quadratic program to obtain
their annotations. Nevertheless, Solovyev et al. [16] have pro-
posed the FP-Taylor tool that implements the Symbolic Taylor
Expansions method to estimate roundoff errors of floating-point
computations. However, these approaches do not scale very well
and therefore have not been applied to high precision computing
workloads.

• Dynamic Anaysis Rubio-González et al. [7] proposed the
Precimonious tool which is a dynamic automated search bases
tool. It tries to decrease the precision of variables and checks if
the accuracy requirements are still fulfilled. Precimonious ex-
ecutes different mixed-precision configurations of the program

Forward

 and

Backward

 static

analysis

Constraints generation
 by static analysis

Final
precision
requirement

 Tuned
optimized program(s)

Output

Multiple oversized
Precision Program

User specified
accuracy

Input

Fig. 1: POP Mixed-Precision Analysis Approach

in order to identify the best configuration that satisfies the error
threshold. Precimonious may be accelerated by a pre-processing
blame analysis process [9]that empirically identifies variables
that do not significantly affect program behavior, and thus are
safe to be assigned lower bit-widths. This combined approach
has shown better results in term of program speedup compared
to using Precimonious alone. Moreover, Lam et al. instrument
binary codes in a tool called CRAFT aiming to modify their
precision without modifying the source codes. Also, their tool
is based on a dynamic search method in order to identify in
which parts of code the precision should be modified. The main
drawback of this tools is that the state space is exponential in
term of number of variables and even exploring a subset is very
time-intensive.

III. POP TOOL: PRECISION OPTIMIZER

At this stage, we present our tool POP. As mentioned in Figure 1,
POP takes as input a program performing floating-point computations
in an oversized precision (generally double precision) referring to our
simple imperative language [4]. Firstly, we call ANTLR (ANother
Tool for Language Recognition) [17] in order to generate from a
grammar file a parser that can build and walk parse tree. After, we
proceed by a dynamic range determination phase which consists in
launching the execution of the program a certain number of times
and to make sure that no overflow can arises during our analysis (we
manage to use a static analyzer in the future). Once the range of
variables is given, POP starts the constraints generation thanks to the
forward and backward transfer functions where the main semantic is
detailed in [4]. The forward approach propagates safely the errors on
the inputs and on the results of the intermediary operations aiming
to determine the accuracy of the results. Next, based on the user
accuracy requirement and the results of the forward analysis, the
backward analysis computes the minimal precision needed for the
inputs and the intermediate results in order to satisfy the assertions.
Therefore, we assign to each control point three integer variables
corresponding to the forward, the backward and the final accuracies
so that the inequality in Equation 4 is verified. Hence, we notice
that in the forward mode, the accuracy decreases contrarily to the
backward mode when we strengthen the post-conditions (accuracy
increases).

0 ≤ accB(`) ≤ acc(`) ≤ accF (`) (4)

Finally, POP resolves the previous constraints by calling the Z3 SMT
solver [11] to find a solution for our constraints and it implements a
cost function to refine the solutions obtained in term of optimality. In
future work, we will explore the policy iteration technique as w new
resolution method [18]. The transformed program is guaranteed to
use variables of lower precision with an minimal number of bits than
the original program. In order to better understand this approach,
we present the following example. Considering a simple example
of a matrix-vector multiplication. The coefficients of the matrix
3 × 3 and of the vector belong to multiple magnitude ranges. The
vector coefficients are x1 = [1.0, 2.0, 3.0], x2 = [10.0, 100.0, 500.0]
and x3 = [100.0, 500.0, 1000.0] and our matrix is defined by

Fig. 2: Matrix-vector multiplication code snippet. The code
on the left designs the initial program in double precision
annotated with labels. On the right, the program after analysis
annotated by the final accuracies at each label.

M1 =

[
[−50.1,50.1] [−50.1,50.1] [−50.1,50.1]

[−10.1,10.1] [−10.1,10.1]
[−5.1,5.1] [−5.1,5.1] [−5.1,5.1]

]
In this example, we

suppose that all variables are in double precision before analysis (left
hand side of Figure 2). Let −→⊕ denote the forward addition, −→⊗ for the
forward multiplication and respectively ←−⊕ and ←−⊗ for the backward
addition and multiplication. We define the forward addition as shown
in Definition 1:

Definition 1: Let Fp and Fq denote two sets of floating-point
numbers in accuracy p and q, respectively. The forward addition −→⊕
is given as shown in Equation (5) where x ∈ Fp and y ∈ Fq . In
Equation (5) and (6) , the operands xpp′ and yqq′ and their results
zrr′ have respectively two parameters p, p′, q, q′ and r, r′ which
denote the correct precision of the result and of the error, respectively.
ε+ denotes the truncation error for the addition. We denote by σ+

the precision of the operator +. More details of the static forward
and backward transfer function are explained in [4]. The forward and
backward transfer functions for the addition are given in equations
(5) and (6).

−→⊕(xpp′ , yqq′) = zrr′ where r = ufp(xpp′ + yqq′)−

ufp(2
ufp(xp

p′
)−p+1

+ 2
ufp(yq

q′
)−q+1

+ 2ufp(zr
r′

)−σ+)
(5)

←−⊕(z, y) = (z − y)pp′ with p = ufp(z − y)− ufp(2ufp(z)−r+1

−2ufp(y)−q+1 − 2ufp(x)−σ+)
(6)

Now, we present in Figure 2 a code snippet of our example
in order to present the important annotations that POP uses. It
is obvious that our program contain several annotations. All the
program variables are initialized to abstract values and annotated
with their control points as shown in the left side of Figure
2 (i.e. a|1| = [−50.0, 50.0]|0|;). Also, we have the statement
require accuracy(x, 23)|55| which informs the system that the
programmer wants to have 23 accurate binary digit on x at this control
point. For 642 size of variables and 858 constraints, POP finds the
minimal precision on the inputs and intermediary results satisfying
the user assertion, as it is mentioned in the right side of Figure 2, in
less than 0.5 seconds (time only for the resolution of constraints and
the calls of the Z3 SMT solver). Moreover, the original program starts
initially with 10335 bits and after program analysis the number of bits
has been reduced to only 1813 bits needed to satisfy the assertions
(an improvement of 83 % of the number of bits needed compared to
the initial number).

After presenting the main objective of POP, we want at this
stage to develop this tool for applications from several domains and
especially the Internet of Things field. We had the idea to apply the
optimization of the precision on applications related to Internet of
the things because of the serious concerns about the memory and

 0

 20

 40

 60

 80

 100

 120

12 14 16 18 20 22

%
 H

al
f a

nd
 F

lo
at

 P
re

ci
si

on
 A

fte
r

An
al

ys
is

User Accuracy Requirement

Half Precision
Float Precision

 0

 20

 40

 60

 80

 100

 120

24 28 30 32 36

%
 F

lo
at

 a
nd

 D
ou

bl
e

Pr
ec

is
io

n
Af

te
r

An
al

ys
is

User Accuracy Requirement

Float Precision
Double Precision

 0

 20

 40

 60

 80

 100

12 14 16 18 20 22 24 28 30 32 36

%
 Im

pr
ov

em
en

t C
om

pa
re

d
to

 th
e

In
iti

al
 B

its
 N

um
be

r

User Accuracy Requirement

 Improvement

 200

 300

 400

 500

 600

 700

 800

12 14 16 18 20 22 24 28 30 32

Si
ze

 o
f t

he
 M

em
or

y
(N

um
be

r
of

 B
yt

es
)

User Accuracy Requirement

Memory size compared to accuracy requirement

Fig. 3: Efficiency of POP on the accelerometer titlt measure application. Top left: the percentage of half and float precision
for different accuracy assertions after analysis. Top right: The percentage of float and double variables for accuracies 24, 28,
30, 32 and 36. Bottom left: Improvement of the number of bits compared to the initial bits number in the original program.
Bottom right: Memory size (in Bytes) in different requirements of accuracy

energy consumptions that are present nowadays on the majority of
IoT devices.

IV. EXPERIMENTAL RESULTS

a) Constraints Generation and Resolution: As we have
explained above, POP generates linear constraints made of propo-
sitional logic formulas and relations between integer elements and
calls Z3 SMT solver in order to obtain a solution. Also, an additional
constraint related to a cost function φ (we take the same definition
in [4]). The purpose of a cost function φ(c) of a given program c
is to compute the sum of the accuracies of all the variables and
the intermediary values collected in each label of the arithmetic
expressions as it is shown in Equation (7).

φ(c) =
∑

x∈Id,`∈Lab

acc(x`) +
∑
`∈Lab

acc(`) (7)

After, our tool searches the smallest integer P such that our system of
constraints admits a solution. Consequently, we start the binary search
with P ∈ [0,52 × n] where all the values are in double precision and
where n is the number of terms in Equation (7). While a solution is
found for a given value of P , a new iteration of the binary search
is run with a smaller value of P . When the solver fails for some P ,
a new iteration of the binary search is run with a larger P and we
continue this process until convergence.

b) Measuring Tilt Angle using Three Axis: To study the
usefulness of our tool, we choose to experiment our analysis on an
example that measures an inclination angle with an accelerometer:
a sensor capable of measuring, in three dimensions, the linear
accelerations of an object as well as vibrations. As a matter of
fact, there are accelerometers in many everyday objects use, such

as smartphones, cars, sports watches and other devices: i.e. the
accelerometer of a phone is able to give you the orientation of the
phone but also ,as indicated by its name, the acceleration undergone
by the phone. An accelerometer usually breaks down into two parts:
a mechanical part which is responsible for detecting the accelerations
of a mass contained in the device and an electronic part having for
mission to interpret this signal. Our application describes how often
accelerometers are used to measure a tilt of an object. Tilt detection
is a simple application of an accelerometer where a change in angular
position of the system in any direction is detected and indicated the
corresponding angle scaled from microcontroller output and in order
to have more accurate measurements of tilt in the x and y planes we
therefore need a 3 axis accelerometer. We aim from the accelerometer
experimentation to measure the usefulness of our analysis and how
POP is capable to optimize the precision of our program variables.
For this example, POP generates 1179 variables and 1767 constraints
which is very manageable by the Z3 solver. Assuming that in the
original program of our examples all the variables are in double
precision, POP succeeded in turning off variables into half and float
precision as shown in the top left side of Figure 3. For example,
for an accuracy of 20, the percentage of variables passing in float is
large compared to the variables in half precision (93.13% for float
and 5.88% for half variables). Also, for accuracies greater than 22,
POP manages correctly the precision turning approach by finding a
float and double precisions compromise. As we show on the top right
side of Figure 3, for a requirement accuracy of 30 and 32, the mixed
precision between float and double is obtained. Also, we can say
that of an accuracy of 24 there is as much float as double precision
variables. Moreover, we notice that for an accuracy of 36 that all the
variables remain in double precision and thus finding the minimal

xVal #20= [-2.0, 2.0] #20 ; yVal #20 = [-2.0, 2.0] #20 ; zVal #20 = [-2.0, 2.0] #20 ;
// total value of the acceleration
sos = xVal * xVal + yVal * yVal + zVal * zVal ;
total = sqrt(sos);
// Angles computation and conversion to degrees
//x Axis
u #21 = xVal #20 / #21 total #20 ;
angleX #22 = u + u * u * u / 6.0 + u * u * u * u * u

* 3.0 /40.0 * 180.0 / 3.1416 ;
require_accuracy(angleX, 24);

//y axis
v #21 = yVal #20 / #21 total #20 ;
angleY #22 = v + v * v * v / 6.0 + v * v * v * v * v

* 3.0 /40.0 * 180.0 / 3.1416 ;
require_accuracy(angleY, 24)

// z axis
w #21 = zVal #20 /#21 total #20 ;
angleZ #22 = 1.570796 - (w + w * w * w / 6.0 + w * w

* w * w * w * 3.0 /40.0 * 180.0 / 3.1416) ;
require_accuracy(angleZ, 24)

float xVal, yVal, zVal, sos;
double angleX, angleY, angleZ;
// init sos, total
.......
.......
//init angleX
angleX = u + u * u * u / 6.0 + u * u * u * u * u

* 3.0 /40.0 * 180.0 / 3.1416 ;
......

//init angleY
angleY = v + v * v * v / 6.0 + v * v * v * v * v

* 3.0 /40.0 * 180.0 / 3.1416 ;
......

//init angleZ
angleZ = acos(zVal / total) * 180.0 / 3.1416;
.......

Fig. 4: Example of mixed-precision inference. Left: source program with inferred accuracies. Right : Program formats.

precision is only possible for accuracies lesser than 36. The bottom
left of Figure 3 describes the improvement of the number of bits
compared to the original program. In fact, the original program starts
with 15105 bits (all in double precision) and after analysis we found
that the improvement, in the number of bits needed to realize the user
requirements, compared to the initial number of bits, ranges from
39% to 84 % for an accuracy starting from 12 to 36 which confirms
the efficiency of our analysis. As the subject of saving memory is
challenging to us, the bottom right of Figure 3 shows the memory
used in Bytes by the program variables according to the precision
requests. Initially, the memory size is equivalent to 816 Bytes and
and we measure in this experiment the size of the memory with each
precision inserted. An important observation on the behavior of our
tool is that POP assigns zeros to the accuracies of the variables that
are not used by the program. We present in Figure 4 our transformed
tilt measure program where in the right side we describe the source
program with the inferred accuracies after analysis and the program
new optimized formats in the right side on the Figure 4.

V. CONCLUSION AND FUTURE WORK

The main idea of this article is to experiment, POP, a tuning
assistant for mixed-precision, in different domain of application. POP
implements a static forward and backward analysis to determine
the minimal precision on the inputs and intermediary results of a
program that guarantees a desired accuracy of the outputs values. The
originality of this article was to adapt the precision tuning technique
in applications of Internet of Things because the type of problem
of energy consumption and memory are widespread in this area. Our
preliminary results shows that it is promising to explore the precision
tuning in this unexplored domain. In this work, we have experimented
POP on the example of an accelerometer which can be used to
measure the static angle of tilt or inclination. Our preliminary results
shows that POP succeeded in computing the accuracy needed for each
variable and intermediary results by an improvement ranging from 65
% to 84 % for an accuracy lesser than 23. This work can be improved
in several ways. Obviously, our approach can be extended to other
applications from various fields including safety-critical systems such
as control systems for vehicles, medical equipment and industrial
plants. Also, we would like to explore the policy iteration method
[18] as a replacement for the non-optimizing solver (Z3) coupled to
a binary search used in this article. Finally, comparing our tool to
other existing tools in the matter of analysis time and speed and the
quality of the solution is a tremendous challenge to examine.

REFERENCES

[1] IEEE Standard for Binary Floating-point Arithmetic, ANSI/IEEE, 2008.

[2] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev,
G. Gopalakrishnan, and Z. Rakamarić, “Rigorous floating-point
mixed-precision tuning,” in Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, ser. POPL 2017.
New York, NY, USA: ACM, 2017, pp. 300–315. [Online]. Available:
http://doi.acm.org/10.1145/3009837.3009846

[3] “Patriot missile defense: Software problem led to system failure
at dhahran, saudi arabia,” General Accounting office, Tech. Rep.
GAO/IMTEC-92-26, 1992.

[4] M. Martel, “Floating-point format inference in mixed-precision,” in
NASA Formal Methods - 9th International Symposium, NFM 2017,
Moffett Field, CA, USA, May 16-18, 2017, Proceedings, 2017, pp. 230–
246.

[5] M. Kim, J. Lee, Y. Kim, and Y. H. Song, “An analysis of energy con-
sumption under various memory mappings for fram-based iot devices,”
in 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Feb
2018, pp. 574–579.

[6] E. Darulova and V. Kuncak, “Sound compilation of reals,” in Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’14. ACM, 2014.

[7] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: tun-
ing assistant for floating-point precision,” in International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC’13, Denver, CO, USA - November 17 - 21, 2013.

[8] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. Legendre,
“Automatically adapting programs for mixed-precision floating-point
computation,” in Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ser. ICS ’13. ACM,
2013.

[9] C. Rubio-Gonzlez, C. Nguyen, B. Mehne, K. Sen, J. Demmel, W. Ka-
han, C. Iancu, W. Lavrijsen, D. H. Bailey, and D. Hough, “Floating-
point precision tuning using blame analysis,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), 2016.

[10] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, Los Angeles, California, USA,
January 1977, 1977, pp. 238–252.

[11] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Introduc-
tion and applications,” Commun. ACM, 2011.

[12] N. Damouche and M. Martel, “Salsa: An automatic tool to improve
the numerical accuracy of programs,” in Automated Formal Methods,
ser. Kalpa Publications in Computing, N. Shankar and B. Dutertre, Eds.
EasyChair, 2018.

[13] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-
Point Arithmetic, 1st ed. Birkhäuser Boston, 2009.

[14] D. H. Bailey and J. M. Borwein, “High-precision arithmetic: Progress
and challenges.”

[15] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek,
and S. Tomov, “Exploiting mixed precision floating point hardware in
scientific computations,” 2007.

[16] A. Solovyev, C. Jacobsen, Z. Rakamarić, and G. Gopalakrishnan, “Rig-
orous estimation of floating-point round-off errors with symbolic taylor

http://doi.acm.org/10.1145/3009837.3009846

expansions,” in FM 2015: Formal Methods, N. Bjørner and F. de Boer,
Eds. Springer International Publishing, 2015.

[17] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic
Bookshelf, 2013.

[18] S. Gaubert, E. Goubault, A. Taly, and S. Zennou, “Static analysis by
policy iteration on relational domains,” in Programming Languages and
Systems, R. De Nicola, Ed. Springer Berlin Heidelberg, 2007.

	Introduction
	Background
	Basics on Floating-point Arithmetic
	Mixed-Precision Tuning and Related Work

	POP Tool: Precision OPtimizer
	Experimental Results
	Conclusion and Future Work
	References

