
Precision Tuning of an Accelerometer-Based
Pedometer Algorithm for IoT Devices

Dorra Ben Khalifa1
1 LAMPS - University of Perpignan Via Domitia

52 Av. P. Alduy, 66100, Perpignan, France
dorra.ben-khalifa@univ-perp.fr

Matthieu Martel1,2
2 Numalis

Cap Omega, Rond-point B. Franklin, Montpellier, France
matthieu.martel@univ-perp.fr

Abstract—Internet of Things (IoT) is considered as one of the
most evolving technologies. It impacts almost every aspect of life
in the modern world. One thing that prevents this technology
from reaching its full potential is the too high memory and
energy consumption of IoT devices. An aspect of this problem is
the numerical computations performed by IoT devices which are
generally carried out in higher precision than needed, by lack of
techniques to tune this precision in function of the actual needs
of the application. To surpass this limitation, we present our
tool POP based on a static program analysis, done by abstract
interpretation. POP provides a mixed precision tuning that finds
the instructions and variables that may use lower precision with
respect to the user accuracy requirements on the results. We
demonstrate the efficiency of POP to tune an accelerometer-
based pedometer algorithm for embedded applications.

Index Terms—Computer arithmetic, precision tuning, pe-
dometer, forward and backward static analysis.

I. INTRODUCTION

Initially designed for scientific computing, floating-point
arithmetic [1] is more and more used in many embedded
and safety critical systems including cars, planes, nuclear
power plants, or medical devices. These applications rely
tremendously on floating-point computations especially with
the wide availability of processors with hardware floating-
point units such as in smartphones and, more recently, in
IoT devices. However, inaccuracies in these computations can
cause bugs, which can lead to disasters [2] [3] [4].

The Internet of Things (IoT) is one of the most evolving
technologies that contribute significantly to the improvement
of our daily lives. However, the problem of energy and
memory consumption are ubiquitous in this field. Indeed,
many IoT devices require continuous power, and although
the battery is an option, it is not always economical. Other
devices are powered by an independent power supply like
battery and energy harvesters, which provide limited energy
[5]. Thus, batteries require frequent changing and replace-
ment caused by their short life cycle. In addition, the IoT
device memory is used to store data, therefore, many memory
accesses occur during the execution of the devices.

Nevertheless, IoT applications usually do not require very
accurate results and, consequently, it is very feasible to
lower the average precision of the computations to cope with
memory and energy issues without affecting the efficiency
of the devices. We propose to find the least data formats
needed to ensure a certain accuracy, also called precision
tuning, by means of our tool POP (Precision OPtimiser).
The present work addresses the problem of determining the

minimal precision on the inputs and intermediary results
of a pedometer code performing floating-point computations
while guaranteeing a desired accuracy on the outputs. The
challenge is then to use no more precision than needed
wherever possible without compromising the overall accuracy
(using a too low precision for this algorithm and its data leads
to wrong results). Let us remark that tuning the precision of
the input data may let the device designer choose less ac-
curate sensors, usually cheaper and less resource consuming.
Our precision tuning technique offers many advantages. First,
it can be repositioned to the fixed-point arithmetic for the case
of IoT devices without floating-point units. Second, the POP
tool aims to apply mixed-precision tuning on the floating-
point formats of the program which consists on associating
different precisions for different floating-point variables [6].

POP combines a forward and backward static analysis,
done by abstract interpretation [7]. The forward analysis
examines how errors are magnified by each operation which
contribute to the accuracy on the results [8] [9]. By con-
sidering the user accuracy requirements at some control
points and the results of the forward analysis, the backward
analysis is a complementary approach that starts with the
computed answer to determine the least floating-point input
that would produce it. Our analysis is expressed as a set
of propositional formulas on constraints between integer
variables only (checked by the SMT solver Z3 [10]). As
a result, the transformed program is guaranteed to use
variables of lower precision than the original program. For
our experiments, we use an accelerometer-based pedometer
algorithm for embedded applications [11] coming from the
IoT field. In previous work [12], we showed the usefulness
of our analysis on an accelerometer code which can be used
to measure the static angle of tilt or inclination. Here, we
evaluate POP on a significantly more complex example, a
pedometer that implements a step counting algorithm. The
step counter calculates the steps from the x, y and z axis of
the accelerometer example, depending on which acceleration
axis change is the largest one. The steps of the pedometer
algorithm and the experimental results of our method are
illustarted in Section III.

The remainder of the article is organized as follows.
Section II introduces the floating-point arithmetic and details
the approach integrated in our tool throughout an example.
Section III is devoted to the analysis of the experimental
results. Section IV deals with the related work and Section
V concludes.

II. BACKGROUND MATERIAL

This section provides essential background on floating-
point arithmetic (Section II-A) and presents the main tech-
nique of constraints generation on an accelerometer sensor
similar to what we can find in smartphones to convert brute
sensor data into movements in Section II-B. This accelerom-
eter may also feed the pedometer algorithm introduced in
Section III.

A. Elements of Floating-Point Arithmetic

The floating-point arithmetic is specified by the IEEE754
Standard. In this arithmetic, a number x = s.m.βe−p+1is
expressed in base β = 2. Each number has a sign s ∈ {-1,1},
a mantissa m = d0.d1...dp−1, whose digits are 0 ≤ di < β,
0 ≤ i ≤ p−1. The precision is given by p and the exponent is
e ∈ [emin, emax]. Briefly speaking, we present in Equation
(1) the ufp of a floating-point number x where its ulp is
given in Equation (2) with p bits of precision. These two
functions make it possible to compute the propagation of
errors throughout a computation.

ufp(x) = min{n ∈ Z : 2n+1 > x} = blog2(x)c (1)

ulp(x) = ufp(x)− p+ 1 . (2)

B. Constraints Generation on a Three Axis Accelerometer

We explain, in the present section, the forward and back-
ward static analysis expressed as a system of constraints
performed by POP on the program of an accelerometer.
This program allows one to compute the static angle of
inclination also called tilt angle. An accelerometer detect
movement; when moved, it records acceleration. It is used,
in smartphones, handheld game consoles and other devices,
to measure the acceleration of the device from side to side
(lateral), up and down (longitudinal), and front to back
(vertical) [12]. It can also provide inputs to the pedometer of
Section III. In order to improve the accuracy of the measure
of inclination in the x and y planes, a 3 axis accelerometer is
used. Figure 1 describes the improvement found by POP on
the number of bits in function of the desired accuracy on x,
y and z by comparison to the initial code. Initially, the code
used 15105 bits (all in FP64). For the static analysis, POP
generates 1767 constraints among 1179 variables which is
quite tractable for the Z3 solver. As a result, the improvement
given by our tool on the quantity of bits required to reach
the user specification, ranges from 39% to 84 % for given
accuracy in the range of 12 to 36 (an accuracy n means that
the computed result x̂ has n correct bits w.r.t. the exact result
x, i.e |x − x̂| ≤ 2−n). This confirms the efficiency of our
tool as we can see in Figure 1. Figure 2 shows the different
formats of precision obtained by POP for a code snippet of
the accelerometer example for a user accuracy of 23 bits on
variable angleX . The complete accelerometer code has been
presented in [12]. Now, we move to explain where this gain
in precision comes from and what is the technique behind
our tool.

From the technical point of view, POP takes at first a
program in an oversized precision, generally all the variables
are in the IEEE754 double precision. POP is able to analyze
programs supporting the four elementary arithmetic expres-
sions, arrays, loops, conditions, trigonometric functions and

 0

 20

 40

 60

 80

 100

12 14 16 18 20 22 24 28 30 32 36

%
 Im

pr
ov

em
en

t C
om

pa
re

d
to

 th
e

In
iti

al
 B

its
 N

um
be

r

User Accuracy Requirement

 Improvement

Fig. 1: Improvement with respect to the initial number of bits
in the initial accelerometer code.

the square root function. A range determination by dynamic
analysis is performed on all the program variables. In the
future, we plan to use a static analyzer in the future. Next, a
set of constraints is generated from the syntactic tree of the
program. These constraints encode our forward and backward
static analysis. The Z3 SMT solver finds the solution [10].

More precisely, the forward analysis propagates soundly
the roundoff errors on the inputs of the program as well as
on the intermediary results. Doing so, we can determine the
accuracy of the results. Later on, using the user accuracy
requirements plus the accuracies given by the forward analy-
sis, our backward analysis infers the least precision required
for the inputs and the results of the intermediary compu-
tations to fulfill the assertions [9] (our programs contain
a require accuracy(x, p)|`| statement which indicates to
POP the precision asked by the user: p bits for variable x at
the control point `). Hence, we assign to any control point
` two kinds of integer parameters: the ufp of the value (see
Equation (1)) and 3 integer variables: one for the forward
accuracy, one for the backward and one for the final accuracy,
denoted by accF (`), accB(`) and acc(`) respectively, such
that Equation (3) always holds.

0 ≤ accB(`) ≤ acc(`) ≤ accF (`) (3)

We encourage the reader to refer to [9] for more explanations
about the forward and backward transfer functions for arith-
metic expressions, statements, trigonometric functions and
square root function.

The main point of our technique is to formulate the
transfer functions (both forward and backward) as a set
of constraints containing only propositional logic formulas
and affine expressions between integer quantities, although
the program contains non-linear floating-point computations.
Once the constraints have been generated, POP uses Z3 [10]
in order to find a solution to this system. The solutions
returned by Z3 being not unique, we add an additional
constraint to our system which corresponds to a cost function
φ. Let Id and Lab denote the sets of variable identifiers and
labels respectively. Let acc(x`) be a variable of the constraint
system corresponding to the final accuracy of x at control
point ` and let acc(`) be the final accuracy of the operation
done at control point `. For the source code c, the φ(c)
function aims at computing the sum of the acc(x`) quantities

xVal#21 = [2.0,2.0]#21;
yVal#21 = [2.0,2.0]#21;
zVal#21 = [2.0,2.0]#21;
u#22= xVal#21 *#22 [0.3,0.3]#21;
angleX0= 0#22;
angleX1#23 = u#22 *#23 u#22 *#22
u#22 *#22[0.1666,0.1666]#22;
angleX2#20 = u#22 *#20 u#22 *#20
u#22 *#19
u#22 *#19 u#22 *#19 4.2971#19;
angleX#23 = angleX0#22 +#23 angleX1#23
+#23 angleX2#20 ;

require_accuracy(angleX,23)#23; [...]

Fig. 2: Mixed-precision tuning on the computation and con-
version of angleX of the acceleromter program.

for all variables and accuracies acc(`) at each control point
`. This corresponds to the functions given in Equation (4).

φ(c) =
∑

x∈Id,`∈Lab

acc(x`) +
∑

`∈Lab

acc(`) (4)

Next, POP looks for the minimal integer P such that the
constraints given to Z3 admit a solution. As a consequence,
we perform a binary search for P ∈ [0,52 × n]. The value
52×n corresponds to the upper bound when all the accuracies
are in double precision. When for some value of P , a solution
is found by Z3, we reiterate with a smaller value of P .
Conversely if Z3 fails for some P , we reiterate with a larger
P and we continue this process up to convergence. Note that
φ(c) becomes more complex when dealing with arrays. For
the sake of conciseness, we omit these details in this article.

Our goal is to use POP on applications coming from
the Internet of Things field because of memory and energy
consumptions issues on many IoT devices. In the next
section, we apply the optimization of the precision on an
accelerometer-based pedometer for embedded applications.

III. PRECISION TUNING OF A PEDOMETER ALGORITHM

We show, in this section, a classical pedometer code and
how POP is able to tune the precision of this code. Section
III-A introduces the algorithm and Section III-B presents
some experimental results.

A. Step Counting Algorithm for Embedded Applications

A pedometer is a small device that counts the number of
footsteps [13]. It is also called a footstep counter and it uses
an accelerometer similar to the one of Section II-B to count
the number of footsteps. Some pedometers also perform a few
additionally tunable computations to detect how far a person
walked in miles or how many calories have been burned [14].
Since the program is complex in its structures, containing
nested loops, arrays and conditions, there are several stages
in footstep detection [15] as summarized in Figure 3. We
outline each of these in this section.

a) Extract 3D Vector: The algorithm, at the first stage,
takes the magnitude of the entire acceleration vector i.e.√
x2 + y2 + z2, where x, y, and z are the outputs of the

accelerometer along the three axis.
b) FIR low-pass filter: Sometimes, the pedometer vi-

brates very quickly or very slowly for a reason other than
walking or running. The step counter will also take it as
a footstep and this invalid information must be discarded.

So, the second step consists of removing the noise and
extracting the specific signal corresponding to walking. A
simple solution is to use a low pass filter that keeps only
frequencies related to walking and removes the rest [13]. In
practice, a low pass filter is a circuit that modifies, reshapes or
rejects any unwanted high frequencies of an electrical signal
and accepts or transmits only the signal desired by the circuit
designer. For instance, if a regular walking pace is under two
steps a second, equivalent to 2 Hz, then all frequencies above
this value may be removed by the filter and all other activities
such as running or bicycling cannot be detected.

c) Autocorrelation to find the signal periodicity: The
autocorrelation function [11] is the core of the step counter
algorithm. It can be used to find the periodicity of a noisy
signal in the time domain. Briefly speaking, we call a
periodicity a pattern belonging inside a time series and which
is repeated at regular time intervals. So, the autocorrelation
function correlates the elements to others of the same series
which are separated by a determined time interval.

d) Footstep detection using derivative: In this step, the
algorithm calculates the derivative and finds the first zero
crossing from positive to negative (or negative to positive),
which corresponds to the first positive peak in the autocorre-
lation. Finally, by counting the number of times the derivative
function has changed from positive to negative, the number
of steps occurred is detected. Figure 3 illustrates the whole
algorithm stages described above. For each output (which is
also the input for the next algorithm). POP is annotated with
assertions indicating which accuracy the user wants for the
variables of interest. The main variables used in our example
are the following. First, num Tuples denotes the width of
the window used to seek autocorrelation (400 tuples (x, y, z)
in our example). In the next section, we will make vary the
size of the window, as well as the accuracy requirements, and
see its impact on the performance of POP. Next, mag sqrt
holds the magnitude of data x, y and z. The annotation
require accuracy(mag sqrt, 23) indicates to POP that all
the values stored in this variable must have an accuracy of
23 bits corresponding to a single precision number rounded
to the nearest. At the output of the FIR low-pass filter, the
signal is given in variable lpf . After computing and removing
the mean, the autocorrelation is applied and the results are
holden in autocorr buff . Finally, the algorithm calculates
the derivative and stores it in the deriv variable. Noting that
all theses variables are in double precision before the start
of POP analysis. After the explanation of the different steps
of the footstep counter algorithm given to POP, we measure
in the next section the usefulness of our precision tuning
analysis.

B. Experimental Evaluation

The main results of running POP on the footstep counter
algorithm for the data set of [11] are presented in figures 4,
5, 6 and 7 which correspond to:
• The measurements of performance of POP in terms of

precision improvement compared to the original pro-
gram. The total number of bits is obtained by adding
the number of bits needed to store all the variables
and intermediary results at all the control points. In the
original program, it is equal to 53 times the number of

x
y

z

C
o
m

p
u
te d

istan
ce

 sq
rt(x

2+
y

2+
z

2)

mag_sqrt

L
o
w

 p
ass filter F

IR

lpf

S
u
b
tract m

ean

lpf

A
u
to

co
rrelatio

n
:

fin
d
 p

erio
d
icity

autocorr_buff

 D
eriv

ate

deriv

Fig. 3: Overview of the footstep counter algorithm.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

12 14 16 20 22 24 28 32

To
ta

l N
um

be
r

of
 b

its
 a

fte
r

PO
P

op
tim

iz
at

io
n

 Accuracy User Requirements

Optimized number of bits for 400 tuples (x, y, z)

 0

 20

 40

 60

 80

 100

12 14 16 20 22 24 28 32
%

 I
m

pr
ov

em
en

t
of

 t
he

 p
ed

om
et

er
 c

od
e

Accuracy User Requirements

Pedometer code improvement for x, y and z accelerometer entry

Fig. 4: Top left: Number of bits optimized for different user accuracy requirements. Top right: Improvement compared to
the initial total of bits for the original program.

 20

 40

 60

 80

 100

 120

 140

40 80 120 160 200 240 280 320 360 400

P
O

P
 a

n
a
ly

si
s

e
xe

u
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d
s

Size of triplets of accelerometer data

Time for program evaluation and analysis
Z3 constraints resolution time

Fig. 5: Comparing the execution time of POP analysis and
the time spent by Z3 to find a solution to our system of
constraints.

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

12 14 16 20 22 24 28 32 36 40

N
um

be
r

of
 b

it
s

fo
r

di
ff

er
en

t
ra

ng
es

 o
f

x,
 y

 a
nd

 z

Accuracy User Requirements

20% range around x, y and z central value
30% range around x, y and z central value
40% range around x, y and z central value
60% range around x, y and z central value

80% around x, y and z central value

Fig. 6: POP optimization of the total number of bits for
different magnitude of ranges of x, y and z.

control points, 53 being the size of mantissas in double
precision,
• The execution time for the program analysis,
• The optimisation in term of number of bits for different

intervals around the x, y and z average values,
• The mixed-precision configurations obtained after anal-

ysis in terms of number of variables or operations
that we may tune into IEEE754 double (FP64), simple
(FP32), precision (FP16) and minifloat precision (FP8).

We ran our experiments on an Intel Core i5-8350U 1.7GHz
Linux machine with 8 GB RAM.

Of the eight accuracy requirements given to POP (from 8 to
32 bits of accuracy by step of 4), the improvement compared
to the initial number of bits in the original pedometer code is
considerable. As shown on the right hand side of Figure 4, the

improvement varies between 64% for an accuracy equal to 28
to 79% for an accuracy of 12. In addition, let us note that POP
remain all variables in double precision for an accuracy of
32 bits and so no mixed precision tuning is achieved beyond
this accuracy for this example. Likewise, these results are
confirmed in the left hand side of Figure 4. Initially starting
with 364905 bits in the original program, the total number
of bits is optimized for more than 50% for an accuracy of
28 (132797 bits).
Clearly, the various measurements of POP execution time
illustrated in Figure 5 are reasonable and only take a few
minutes for the whole pedometer code with a window of
400 data sets. Accordingly to Figure 5, we observe that
the execution time increases when modifying the size of
the accelerometer data set (or in other words, the size of

Fig. 7: The percentage of program variables in FP8, FP16, FP32 and FP64 after POP analysis.

the window used in the autocorrelation stage). Indeed, we
observe that almost all of POP execution time is spent in
calls to Z3.

For windows of 160, 280 and 360 for x, y and z, the Z3
solver takes more to solve the constraints even though the ex-
ecution time to find the new formats for the program variables
of interest remains practical in our working environment. In
addition, POP being a static analysis tool admitting sets for
its inputs, Figure 6 shows how POP behaves if there is no
scalar inputs but intervals. In practice, we have taken intervals
around average values for x, y and z so as to be based on a
set of executions instead of a single one. The histogram of
Figure 6 shows that POP succeeded in optimizing the initial
number of bits for the original pedometer code, starting with
238977 bits, for a user accuracy more than 36 bits while for
the case of the scalar values of the left hand side of Figure
4 there were no precision tuning beyond an accuracy of 32.

Assuming that in the original pedometer code, all the
variables are in double precision, POP succeeded in turning
off variables into half and float precision as shown in Figure 7
and other variables remain in double precision for some
accuracy assertions. The various diagrams of Figure 7 show
the percentage of variables, after POP analysis, in FP8, FP16,
FP32 and FP64. To mention a few, 23% of variables are tuned
to simple precision while the majority remains in FP64 for
an accuracy of 16. Also, 50% of the program variables are
turned off in simple precision for an accuracy of 28 although
48% still in double 64-bit floating-point precision and no
variables tuned to FP8 precision. We present in Figure 8 the
new mixed-precision formats of three steps of the footstep
detection algorithm detailed in Section III-A which are: the
low pass filter, remove of the mean and the autocorrelation
function after POP analysis. The top left of Figure 8 shows
the original code for these functions where all the variables

are in double precision and on the top right we annotate the
code with the new optimized formats for a user requirement
of 20 bits for each function output.

IV. RELATED WORK

Many efforts have been done with the aim to find the
minimal precision on program variables while satisfying the
desired accuracy on the results. We classify these approaches
into two categories: static methods that tune the precision to
control the error and dynamic searching methods that take
into consideration the performance of the tuned programs.

a) Static Analysis Tools: Several rigorous static anal-
ysis approaches employed interval and affine arithmetic or
Taylor series approximations to analyze numerical stability
and to provide rigorous bounds on rounding errors. In this
context, Solovyev et al. [16] have proposed the FP-Taylor
tool which implements a method called Symbolic Taylor
Expansions in order to estimate round-off errors of floating-
point computations. More recently, work in FP-Taylor was
developed to ensure the mixed-precision tuning technique. In
practice, FPTuner provides expression-level precision guaran-
tees by using Taylor series expansions. It formulates an error-
constrained mixed integer optimization problem that attempts
to find the lowest precision possible for a given error bound.
The mathematical model obtains a rigorous error bound but is
unable to deal with statements such as loops and conditionals,
making it unsuited for most programs. Darulova et al. [17]
proposed a technique to rewrite programs by adjusting the
evaluation order of arithmetic expressions prior to tuning.
However, the technique is limited to rather small programs
that can be verified statically.

b) Dynamic Searching Applications: Precimonious [18]
is a dynamic automated search based tool. It aims at find-
ing the 1-minimal configuration, i.e., a configuration where

/*lowPassfilt function*/
aux0 = 0.0;
for(n = 0; n < numTuples; n++) {
tempLpf = 0.0;
for (i = 0; i < lpfFiltLen; i++){
if(n - i >= 0.0){
aux0 = lpfCoeffs[i] * magSqrt[n - i];
tempLpf = tempLpf + aux0;};

};
};
require_accuracy(tempLpf, 20);

/* remove_mean function*/
sum = 0.0;
for(i = 0, i < numTuples, i++){
sum = sum + lpf[i];};

sum = sum / numTuples;
for (i = 0; i < numTuples; i++){
lpf[i] = lpf[i] - sum ; };
require_accuracy(lpf, 20);

/*Autocorrelation function*/
for(lag =0, lag < numAutoCorrLags, lag++){
tempAc = 0.0;
aux1 =0.0;
for(i=0; i<numTuples-lag; i++){
aux1 = lpf[i] * lpf[i+lag];
tempAc = tempAc + aux1;};

autoCorrBuff[lag]= tempAc;
};
require_accuracy(autoCorrBuff, 20);

/*lowPassfilt function*/
aux0#20 = 0.0#20;
for(n = 0; n < numTuples; n++) {
tempLpf#20 = 0.0#20;
for (i = 0; i < lpfFiltLen; i++){
if(n - i >= 0.0){
aux0#20 = lpfCoeffs[i]#20 *#20 magSqrt[n - i]#35;
tempLpf#20 = tempLpf#20 +#20 aux0#20;};

};
};
require_accuracy(tempLpf, 20)#20;

/* remove_mean function*/
sum#23 = 0.0#23;
for(i = 0; i < numTuples; i++){
sum#23 = sum#23 +#23 lpf[i]#23;};

sum#23 = sum#23 /#23 numTuples#13;
for (i = 0; i < numTuples; i++){
lpf[i]#23 = lpf[i]#23 -#23 sum#23 ;};
require_accuracy(lpf, 20)#20;

/*Autocorrelation function*/
for(lag =0; lag < numAutoCorrLags; lag++){
tempAc#24 = 0.0#24;
aux1#24 = 0.0#24;
for(i=0; i<numTuples-lag; i++){
aux1#24 = lpf[i]#23 *#24 lpf[i+lag]#23;
tempAc#24 = tempAc#24 +#24 aux1#24;
};

autoCorrBuff[lag]#24 = tempAc#24;
};
require_accuracy(autoCorrBuff, 20)#20;

Fig. 8: Left: Low pass filter FIR, remove mean and autocorrelation functions of the original program. Variable lpf holds the
filtered signal where lpfF iltLen is the length of the filter. magSqrt denotes the square root of magnitude data of x, y and
z. numAutoCorrLags denotes the number of lags to calculate the autocorrelation and autocorr buff holds the results.
The require accuracy statement states that the variables must have 20 bits. Right: source program with inferred accuracies.

changing even a single variable from higher to lower preci-
sion would cause the configuration to cease to be valid. A
valid configuration is defined as one in which the relative
error in program output is within a given threshold and there
is a performance improvement compared to the baseline ver-
sion of the program. However, it does not use any knowledge
on the structure of the program to identify potential variables
of interest. Also, we mention the Blame Analysis [19] which
is another dynamic method that speeds up precision tuning
by combining concrete and shadow program execution. It
creates a blame set for each instruction, which comprises
the variables whose precisions can be reduced to reach a
given error threshold of the instruction under consideration.
While this technique is considered as expansive, it does
reduce the search space for Precimonious when these two
techniques are used together. Following with the idea of pro-
gram transformation, the recent tool AMPT-GA [20] selects
application-level data precisions to maximize performance
while satisfying accuracy constraints. AMPT-GA combines
static analysis for casting-aware performance modeling with
dynamic analysis for modeling and enforcing precision con-
straints. Lately, a new solution called HiFPTuner [21] reduces
this problem to some extent by taking a white box approach.
It analyzes the source code and its runtime behaviors to
identify dependencies among floating-point variables, and to
provide a customized hierarchical search for each program
under analysis, to limit the search space of Precimonious.
In addition, Lam et al. [6] instrument binary codes in a
tool called CRAFT aiming to modify their precision without
modifying the source codes. Also, their tool is based on a

dynamic search method in order to identify in which parts of
code the precision should be modified. The major drawback
is that it does not guarantee a reduction in the execution
time. We mention, also, some models in [22] that perform
Shadow Value Analysis by inserting low level instructions
at runtime to simulate floating point instructions at another
precision. However, this is only a tool for error analysis, not
for finding faster configurations.

V. CONCLUSION

We have evaluated, in this article, our tool POP in the IoT
field on a complex example, a pedometer that implements
a step counting algorithm for embedded applications. This
example is significantly more complex than the accelerometer
example of [12] which can be used as input of the present
pedometer. The main technique of POP brings two novelties:
a forward and backward static analysis and then to express
the obtained transfer functions as a set of constraints made of
first order predicates and affine integer relations only. These
constraints are checked by the Z3 SMT solver. Our results
show that POP achieve success when computing the accuracy
desired by the user for each variable by an improvement
ranging from 64 % to 79 % for an accuracy lesser than
32. In addition, our approach manages correctly the mixed-
precision turning which is confirmed by the different formats
of program variables obtained after the analysis. It is also
noticeable that POP execution time remain very short, even
for complex codes like the code of the pedometer.

In the future, we aim to go further in this domain appli-
cation by applying our method to a real program integrated

in an IoT device to measure physically the gain in memory
and energy.

Also, we aim at improving our technique for precision
tuning by generating an Integer Linear Problem (ILP) from
the program source code. Basically, this will be done by
reasoning on the most significant bit and the number of
significant bits of the values which are integer quantities. The
solution to this problem, computed by a linear programming
solver, will give the optimal data types at the bit level. A
finer set of semantic equations can also be proposed which
does not reduce directly to an ILP problem. So we aim at
implementing these two techniques and comparing them to
the current method.

REFERENCES

[1] IEEE Standard for Binary Floating-point Arithmetic, ANSI/IEEE,
2008.

[2] “Patriot missile defense: Software problem led to system failure
at dhahran, saudi arabia,” General Accounting office, Tech. Rep.
GAO/IMTEC-92-26, 1992.

[3] A. D. Franco, H. Guo, and C. Rubio-González, “A comprehensive
study of real-world numerical bug characteristics,” in ASE 2017. IEEE
Computer Society, 2017.

[4] D. Monniaux, “The pitfalls of verifying floating-point
computations,” CoRR, vol. abs/cs/0701192, 2007. [Online]. Available:
http://arxiv.org/abs/cs/0701192

[5] M. Kim, J. Lee, Y. Kim, and Y. H. Song, “An analysis of energy
consumption under various memory mappings for fram-based iot
devices,” in 4th World Forum on Internet of Things (WF-IoT), 2018.

[6] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. Leg-
endre, “Automatically adapting programs for mixed-precision floating-
point computation,” in Supercomputing. ACM, 2013.

[7] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in POPL. ACM, 1977, pp. 238–252.

[8] M. Martel, “Floating-point format inference in mixed-precision,” in
NASA Formal Methods, NFM 2017, ser. LNCS, vol. 10227, 2017.

[9] D. Ben Khalifa, M. Martel, and A. Adjé, “POP: A tuning assistant for
mixed-precision floating-point computations,” in Formal Techniques
for Safety-Critical Systems, ser. Communications in Computer and
Information Science, vol. 1165. Springer, 2019.

[10] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
TACAS, ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[11] D. Morris, T. S. Saponas, A. Guillory, and I. Kelner, “Recofit: Using
a wearable sensor to find, recognize, and count repetitive exercises,”
pp. 3225–3234, 2014.

[12] D. Ben Khalifa and M. Martel, “Precision tuning and internet of
things,” in Internet of Things, Embedded Systems and Communications,
IINTEC 2019. IEEE, 2019, pp. 80–85.

[13] T. Ahola, “Pedometer for running activity using accelerometer sensors
on the wrist,” Medical Equipment Insights, 2010.

[14] N. Zhao, “Full-featured pedometer design realized with 3-axis digital
accelerometer,” 2010.

[15] R. Libby, “A simple method for reliable footstep detection on embed-
ded sensor platforms,” Sensors (Peterborough, NH), 2008.

[16] A. Solovyev, M. S. Baranowski, I. Briggs, C. Jacobsen, Z. Rakamaric,
and G. Gopalakrishnan, “Rigorous estimation of floating-point round-
off errors with symbolic taylor expansions,” ACM Trans. Program.
Lang. Syst., vol. 41, no. 1, pp. 2:1–2:39, 2019.

[17] E. Darulova, E. Horn, and S. Sharma, “Sound mixed-precision opti-
mization with rewriting,” CoRR, vol. abs/1707.02118, 2017.

[18] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: tuning
assistant for floating-point precision,” in High Performance Computing,
Networking, Storage and Analysis. ACM, 2013, pp. 27:1–27:12.

[19] C. Rubio-Gonzlez, C. Nguyen, B. Mehne, K. Sen, J. Demmel,
W. Kahan, C. Iancu, W. Lavrijsen, D. H. Bailey, and D. Hough,
“Floating-point precision tuning using blame analysis,” in International
Conference on Software Engineering (ICSE), 2016, pp. 1074–1085.

[20] P. V. Kotipalli, R. P. Singh, P. Wood, I. Laguna, and S. Bagchi,
“Ampt-ga: automatic mixed precision floating point tuning for gpu
applications,” in ICS ’19. ACM, 2019, pp. 160–170.

[21] H. Guo and C. Rubio-González, “Exploiting community structure
for floating-point precision tuning,” in Software Testing and Analysis.
ACM, 2018.

[22] M. O. Lam and B. L. Rountree, “Floating-point shadow value analysis,”
in Extreme-Scale Programming Tools. IEEE Press, 2016.

