
Numerically Accurate Code Synthesis

for Gauss Pivoting Method

to Solve Linear Systems Coming from Mechanics

Mikaël Barboteu, Nacera Djehaf and Matthieu Martel

barboteu@univ-perp.fr, nacera.djehaf@univ-perp.fr, matthieu.martel@univ-perp.fr

Laboratoire de Mathématiques et Physique

Université de Perpignan Via Domitia

52 Avenue Paul Alduy, 66860 Perpignan, France

Abstract

In numerical analysis of mechanical problems, we usually have to solve huge linear systems, which

may be non-symmetric or ill-conditioned. For these reasons, it is necessary to develop original

and domain specific approaches to treat these family of systems. In this work, we introduce a

new methodology to synthesize numerically accurate programs for the Gauss pivoting method. The

synthesis is based on program transformation techniques and it is guided in its estimation of accuracy

by interval arithmetic that computes the propagation of roundoff errors. We apply our code synthesis

to the resolution of systems coming from finite element method arising from problems of Mechanics.

We test our synthesizer on two problems concerning the flexion of a beam and the sliding contact

of a viscoelastic body on a rigid foundation. Our experimental results show that the specialized

synthesized code to solve the families of systems given in input is far more accurate and faster than

the standard implementation of the gauss method.

AMS Subject Classification : 65-04, 65K15, 65Y04, 68-04, 68Q25, 68Q42, 68Q55, 74-04, 74M15,

90C05

Key words : Numerical accuracy, Computer arithmetic, Program transformation, Code synthe-

sis, Finite element method, Linear systems, Gauss pivoting algorithm, Ill-conditioning, Mechanical

problems.

1. Introduction

Problems of Mechanics are usually expressed in terms of partial differential equations (PDEs)

and most of the times, these PDEs cannot be solved with analytical methods due to the presence

of non trivial complex constitutive laws as viscoelasticity, hyperelasticity, contact, friction... To

determinate the solution of these problems, numerical methods are needed. In our context, the

numerical method consist in approximating the systems of PDEs and then in solving the resulting

approximated systems. In the framework of Mechanics, the main discretization methods used in

the literature are the finite element method, the finite difference method and the finite volume

method, which are selected according to the kind of problems considered [8]. In all these classes of

methods, the discretization of the problems leads to the resolution of a system of linear equations.

In this work, we considered linear systems coming from the finite element method. Furthermore,

Preprint submitted to Elsevier

*Manuscript

Click here to view linked References

the linear systems which we are interested in solving are represented by huge ill-conditioned sparse

matrices which are sensitive to roundoff errors. There exists many well-known algorithms to solve

these systems, based on direct methods such as Gauss pivoting method or on iterative methods such

as the conjugated gradient method [16, 3]. However these methods are sensitive to the roundoff

errors introduced by the floating-point arithmetic [2, 7] used by computers and which may partly

or totally falsen the results of the computation. Indeed, the arithmetic of floating-point numbers

strongly differs from the arithmetic of real numbers. For example, the usual rules on elementary

operations like associativity, distributivity, etc. do not hold any longer and the numerical accuracy of

the computation depends on how formulas are written. For these reasons, it is necessary to develop

original and domain specific approaches to treat these family of systems.

Recently, several tools such as Herbie [15] and Salsa [6] have been proposed to automatically

rewrite the mathematical formulas occurring in programs into mathematically equivalent formulas

which evaluate more accurately in the computer arithmetic (in the sense that we obtain a result

closer to the mathematical result that we would obtain if the computer used the real arithmetic).

This work is motivated by the fact that the floating-point arithmetic is particularly not intuitive

and that it is hard for the programmer to determine by hand how formulas should be written. In

this work, we go a step further by introducing a new tool to synthesize automatically algorithms

specialized for a family of systems. More precisely, we generate numerically accurate and time

efficient programs for the Gauss pivoting method, given a family of systems described by interval

matrices (matrices whose elements are intervals). The synthesis generates the code and uses Salsa

to rewrite the computations in function of the ranges of the variables given by the intervals. As a

result, we obtain automatically specialized solving methods, optimized for a family of systems.

To demonstrate the efficiency of our code synthesizer, we use it to generate programs for the

resolution of systems coming from finite element method arising in two problems of Mechanics. The

first problem consists of an academic but relevant mechanical problem which concerns the flexion

of a one dimensional elastic beam fixed on its extremities. For the second example, we consider

a non-trivial problem which describes the sliding contact of a two dimensional viscoelastic body

against a moving foundation. For both problems we show that the code synthesized by our tool

is far more accurate and faster than a standard code for Gauss pivoting method. More generally,

this show that code synthesis is a credible and promising approach to efficiently solve numerically

difficult problems, in domains like Mechanics.

The rest of the paper is structured as follows. In Section 2 we give the state of the art of the

program transformation techniques and code synthesis. In Section 3, we describe the numerically

accurate code synthesis for the Gauss pivoting method. Next, in Section 4 we present several numer-

ical simulations to highlight the performance and the efficiency of the synthesized code compared to

the classical Gauss pivoting method. Finally, in Section 5, we conclude and discuss about the future

work in the continuation of the present article.

2. Program Transformation and Code Synthesis

In this section, we introduce background material needed to understand the rest of this article.

Section 2.1 introduces the IEEE754 Standard for floating-point arithmetic. Section 2.2 presents the

arithmetic used to compute safe bounds on the roundoff errors and an overview of our program

transformation techniques is given in Section 2.3.

2.1. IEEE Standard 754 for Floating-Point Arithmetic

We introduce here some elements of floating-point arithmetic [2, 7]. First of all, a floating-point

number x in base β is defined by

x = s · (d0.d1 . . . dp−1) · β
e = s ·m · βe−p+1 (2.1)

2

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the significant, 0 ≤ di < β, 0 ≤ i ≤ p− 1, p is the

precision and e is the exponent, emin ≤ e ≤ emax.

A floating-point number x is normalized whenever d0 6= 0. Normalization avoids multiple repre-

sentations of the same number. The IEEE754 Standard also defines denormalized numbers which

are floating-point numbers with d0 = d1 = . . . = dk = 0, k < p − 1 and e = emin. Denormalized

numbers make underflow gradual [7]. The IEEE754 Standard defines binary formats (with β = 2)

and decimal formats (with β = 10). In this article, without loss of generality, we only consider

normalized numbers and we always assume that β = 2 (which is the most common case in practice).

The IEEE754 Standard also specifies a few values for p, emin and emax which are summarized in

Figure 1. Finally, special values also are defined: nan (Not a Number) resulting from an invalid

operation, ±∞ corresponding to overflows, and +0 and −0 (signed zeros).

Format Name p e bits emin emax

Binary16 Half precision 11 5 −14 +15

Binary32 Single precision 24 8 −126 +127

Binary64 Double precision 53 11 −1122 +1223

Binary128 Quadruple precision 113 15 −16382 +16383

Figure 1: Basic binary IEEE754 formats.

The IEEE754 Standard also defines five rounding modes for elementary operations between

floating-point numbers. These modes are towards −∞, towards +∞, towards zero, to the nearest

ties to even and to the nearest ties to away and we write them ↑−∞, ↑+∞, ↑0, ↑∼e
and ↑∼a

,

respectively. The elementary operations ⋄ ∈ {+, −, ×, ÷} are then defined by

f1 ⋄↑◦ f2 = ↑◦ (f1 ⋄ f2) (2.2)

where ◦ ∈ {−∞,+∞, 0,∼e,∼a} denotes the rounding mode. Equation (2.2) states that the result

of a floating-point operation ⋄◦ done with the rounding mode ◦ returns what we would obtain by

performing the exact operation ⋄ and next rounding the result using ◦. The IEEE754 Standard also

specifies how the square root function must be rounded in a similar way to Equation (2.2) but does

not specify the roundoff of other functions like sin, log, etc.

Because of the roundoff errors, the results of the computations are not exact. For example, the

value v = 2.7182818 . . . can be computed using Bernoulli’s formula:

v = lim
n→+∞

un with un =

(

1 +
1

n

)n

, n ≥ 0.

In double precision, u8 = 2.718282 but then the accuracy decreases as n grows: u14 = 2.716110,

u16 = 3.035035 and u17 = 1.0. The transformation techniques detailed in Section 2.3 aim at

generating an expression which is mathematically equal to the original one and which minimizes

the roundoff error on the result, i.e. the distance |r− ↑◦ (r)| between the exact result r and the

floating-point result ↑◦ (r). To deal with the errors introduced by the floating-point arithmetic, we

introduce the function ↓◦: R→ R which computes the exact error due to rounding operation.

↓◦ (x) = x− ↑◦ (x) (2.3)

2.2. Error Bound Computation

In order to compute the errors during the evaluation of arithmetic expressions, we compute with

values which are pairs (f, ε) ∈ F × R = E where f denotes the floating point number used by

the machine and ε denotes the exact error ↓◦ (f) attached to f , i.e., the exact difference between

the real and floating-point numbers as defined in Equation (2.3). For example, the real number 1
3

3

is represented by the value w = (↑∼
(

1
3

)

, ↓∼
(

1
3

)

) = (0.333333, (1
3
− 0.333333)). The elementary

operations on E is defined in [14].

In practice, we use an ensemblist version of this arithmetic based on intervals. A so-called

abstract value [5] is a pair of intervals such that the first interval corresponds to the range of the

floating-point values of the program and the second interval corresponds to the range of the errors

obtained by subtracting the floating-point values from the exact ones. In ([f] , [ε]) ∈ E
♯, we have

[f] the interval for the range of the values and [ε] the interval of errors on the values [f]. The

pair ([f] , [ε]) abstracts the set of concrete values {(f, ε) : f ∈ [f] , and ε ∈ [ε]} by intervals in a

component-wise way.

We now introduce the arithmetic expressions on E
♯. We approximate an interval [x] with real

bounds by an interval based on floating-point bounds, denoted by ↑♯◦ ([x]).

↑♯◦ ([x, x]) = [↑◦ (x), ↑◦ (x)] . (2.4)

We denote by ↓♯◦ the function that abstracts the concrete function ↓◦. It over-approximates the

set of exact values of the error ↓◦ (x) = x− ↑◦ (x). Every error associated to x ∈ [x, x] is included

in ↓♯◦ ([x, x]). We also have for the rounding mode to the nearest

↓♯◦ ([x, x]) = [−y, y] with y =
1

2
ulp

(

max(|x|, |x|)
)

. (2.5)

Formally, the unit in the last place, denoted by ulp(x), is the weight of the least significant digit

of the floating-point number x. Equations (2.6) to (2.7) give the semantics of the addition and

multiplication among E
♯, for other operations see [14]. If we sum two numbers, we must add errors

on the operands to the error produced by the roundoff of the result. When multiplying two numbers,

the semantics is given by the development of ([f]1 + [ε]1) × ([f]2 + [ε]2).

([f]1 , [ε]1) + ([f]2 , [ε]2) =
(

↑♯◦ ([f]1 + [f]2), [ε]1 + [ε]2+ ↓
♯
◦ ([f]1 + [f]2)

)

, (2.6)

([f]1 , [ε]1)× ([f]2 , [ε]2) =
(

↑♯◦ ([f]1 × [f]2), [f]2 × [ε]1 + [f]1 × [ε]2 + [ε]1 × [ε]2+ ↓
♯
◦ ([f]1 × [f]2)

)

.
(2.7)

2.3. Program Transformation for Numerical Accuracy

In this section, we describe intuitively how the floating-point computations occurring in programs

may be transformed in order to improve their numerical accuracy. Basically, we use a data structure

called APEG for Abstract Program Expression Graph [10]. An APEG copes with the combinatory

problem by representing in polynomial size an exponential number of mathematically equivalent

expressions. An APEG is made of abstraction boxes, representing, for a given operator and set of

operands, any parsing of the expression up to associativity and commutativity and of equivalence

classes which consist of offering a choice of alternative operators to build an expression. For instance,

the APEG p of Figure 2 represents all the following expressions:

A(p) =















(

(a+ a) + b
)

× c,
(

(a+ b) + a
)

× c,
(

(b+ a) + a
)

× c,
(

(2× a) + b
)

× c, c×
(

(a+ a) + b
)

, c×
(

(a+ b) + a
)

,

c×
(

(b+ a) + a
)

, c×
(

(2× a) + b
)

, (a+ a)× c+ b× c,

(2× a)× c+ b× c, b× c+ (a+ a)× c, b× c+ (2× a)× c















(2.8)

To improve an expression, we first build its APEG A(p) and then we search in A the most

accurate expression following the error computation model of Section 2.2.

4

2 a

×

+

b

�

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Figure 2: APEG for the expression expr =
(

(a+ a) + b
)

× c.

For commands, i.e. assignments, conditionals, loops, functions, etc., we use a set of transforma-

tion rules allowing to mix the computations occurring in different instructions [6]. Basically, these

rules build large expressions in order to offer more opportunities to rewrite them by associativity,

commutativity, etc. For assignments, a first rule discards an assignment after saving it in the mem-

ory of the transformation tool and a second rule rewrites an assignment by inlining the memorized

expressions in the current expression, in order to build a larger expression. When the obtained

expressions become too large, we slice them at a defined level of the syntactic tree and we assign

the sub-expressions to intermediary variables. For example, let us take the code of Figure 3 with

three variables x, y and z and constants a = 0.1, b = 0.01, c = 0.001 and d = 0.0001. We aim at

optimizing z.

Code

x = a+c;

y = b+d;

z = x+y;

y = b+d;

z = x+y;
z = x+y;

z =

(a+c)+(b+d);

z =

a+(b+(c+d));

Memory x7→a+c x7→a+c y7→b+d x7→a+c y7→b+d x7→a+c y7→b+d

Figure 3: Example of code transformation.

We remove the variable x and memorize it. So, the first assignment is discarded and memorized.

We then repeat the same process for y. We may not remove z because it is the variable to be

optimized. Then, we substitute x and y by their expressions and we transform the expression

thanks to its APEG.

The second kind of rules deals with conditionals. If the condition is statically known, we execute

the right branch, otherwise we rewrite both branches of the conditional. Other rules concerning the

conditional consist of re-inserting variables that we have not to discard. For the while loop, one

rule shows how to rewrite the body of the loop, and the other one is similar to the last one seen in

conditionals. At last, we use some rules dealing with sequences of commands and functions.

2.4. Code synthesis

Code synthesis is the mechanized construction of a program. Synthesizing tools takes a spec-

ification of what the program should do, then it automatically generates an implementation that

provably satisfies this specification. Obviously, the synthesized code has to be as efficient as possible.

In our context efficiently means numerically accurate and fast.

5

Synthesis Tool
Linear Systems

+ Resolution

method

Automatically

Generated

Implementation

Figure 4: Code Synthesis Process.

In our case, as a specifications, we consider a particular family of linear systems coming from the

finite element discretization of a Mechanical system of PDEs. The synthesizer tool should generate

automatically a program for the numerical resolution method applied on the specified linear system.

Figure 4 illustrates the process of program synthesis.

3. The Rock-N-Roll tool (RNR)

When we execute a numerical algorithm to solve a linear system of equations on a computer,

each single operation introduces some roundoff errors, which are accumulated during the resolution

process. Then, instead of the exact solution x of a linear system we get an approximate result.

In order to solve this accuracy problem, we have developed a code synthesis tool that generates

automatically a fast and accurate C program for a given family of linear systems. In this section, we

present this tool, Rock-N-Roll. We detail its architecture, its inputs and outputs.

3.1. Architecture

In this section, we describe the main architecture of our tool as shown in Figure 5. Rock-N-Roll

is written in C and made of several modules, described hereafter:

SynthesizerParser C-program

Salsa

Figure 5: Software architecture of the Rock-N-Roll tool.

• Parser: Builds a family of systems [S] as follows: RNR takes as input a linear system S:

Ax=b where A = (aij)16i,j6n ∈ R and b = (bi)16i6ninR, then the interval matrix [A] =

(aij
♯)16i,j6n and the interval vector [b] = (bi

♯)16i6n are build for each i and j as follows:

{

aij
♯ = ([aij − aij × k1, aij + aij × k1], [−aij × k2, aij × k2]) ,

bi
♯ = ([bi − bi × k1, bi + bi × k1], [−bi × k2, bi × k2]) .

Where k1 and k2 are two real values given by the user (in our experiments Section 4, we gave

k1 = 0.11 and k2 = 0.00001),

• Salsa: It is a tool that improves the numerical accuracy of programs by automatic transfor-

mation, it takes a program as input and returns more accurate one [6]. The optimization done

by Salsa depends on the ranges (intervals) given as inputs for the variables of the code to be

optimized,

• Synthesizer: This module implements the desired resolution method by generating the ab-

stract syntax trees for the linear system resolution. Next, it generates specific code and gives

it to the Salsa tool. When the Salsa transformation is achieved, the synthesizer replaces the

previous code by the transformed one which is more accurate,

6

• C-program: Rock-N-Roll outputs a file containing a C-program corresponding to the efficient

implementation of the resolution method specialized for a given family of linear systems with

much better accuracy.

3.2. Inputs and Outputs of the Tool

In order to solve a linear system S : Ax = b of size n using Gauss pivoting method, the tool takes

as input two files that specify the ranges for both of A = (aij)16i,j6n and b = (bi)16i6n, which are

either introduced by the user or calculated by the parser module introduced in Section 3.1, using

the error terms introduced by the user. Let E♯ the set introduced in 2.2. Instead of S : Ax = b, we

use [S] : [A]x = [b] such that A ∈ [A] =(aij
♯)16i,j6n and b ∈ [b] = (bi

♯)16i6n, with aij
♯ ∈ E

♯ and

bi
♯ ∈ E

♯, 1 6 i, j 6 n. We have as input the following system:

[S] :







a11
♯ · · · a1n

♯

...
. . .

an1
♯ · · · ann

♯






x =







b1
♯

...

bn
♯






. (3.1)

Since aij
♯ = ([f]ij , [ε]ij) and bi

♯ = ([f]i , [ε]i) for all 1 6 i 6 n and 1 6 j 6 n, we may rewrite

Equation 3.1 as:











([f]11 , [ε]11) · · · · · · ([f]1n , [ε]1n)
...

. . .

([f]n1 , [ε]n1) · · · · · · ([f]nn , [ε]nn)











x =













([f]1 , [ε]1)
...
...

([f]n , [ε]n)













(3.2)

Recall from Section 2.2 that in the pairs ([f] , [ε]), the first interval [f] consists of the range of

floating-point value and the second interval [ε] consists of the error range associated to the floating-

point interval [f]. Equation 3.2 describes a family of linear systems which, in our case correspond to

a family of problems coming from a system of partial differential equations modeling a mechanical

problem. The objective of the code synthesis is to produce automatically a program specialized in

the resolution of this family of systems.

The output of our tool, Rock-N-Roll, is a C-program implementing Gauss pivoting method to

compute an accurate solution x of S ∈ [S]. The next section is devoted to the presentation of the

main features of the synthesized Gauss pivoting method.

3.3. Synthesized Gauss Pivoting Method

The resolution method synthesized by our tool Rock-N-Roll is Gauss pivoting method, which

is one of the most widely used direct method to solve linear systems. In this section, we describe

our algorithm for code synthesis. A first straightforward approach to write code for Gauss pivoting

method consists in synthesizing a Gaussian elimination program for each element of [S] : [A]x =

[b]. Next, the synthesis of a back substitution computation program is considered to calculate the

unknown x. Algorithm 1 below implements this approach.

7

Algorithm 1 Accurate Gauss pivoting algorithm

• Input:
[S]: [A]x=[b];

• Output:
C-program to compute the solution x;

• Algorithm:

1. GaussSynthesis([A],[b]);

2. [S]←−[S]′: [A]′x=[b]′;

3. BSubSynthesis([A]′,[b]′);

4. C-program implementation;

The four steps of Algorithm 1 are detailed hereafter. We also illustrate on simple examples, the

of each step of the algorithm.

• 1. GaussSynthesis([A],[b]): Produces a numerically optimized code for the Gaussian

elimination rule for each abstract syntactic structure of aij
♯ and bi

♯. In order to have more

accurate results, the GaussSynthesis routine builds a specific code for the Salsa tool [6].

When the Salsa transformation is done, Rock-N-Roll replaces the old piece of code by the

transformed one, which is more accurate.

Example: In this example, we give a piece of code for b4
′ computation, named B4 in our tool, which

is the fourth component of the b of a linear 6-size system. The expression of b′4 computation given

by our synthesizer before Salsa is:

float B_4 =(((b4-(a4_1/a1_1)*b1)-((a4_2-(a4_1/a1_1)*a1_2)/(a2_2-(a2_1/a1_1)*a1_2))

*(b2-(a2_1/a1_1)*b1))-(((a4_3-(a4_1/a1_1)*a1_3)-((a4_2-(a4_1/a1_1)*a1_2)/(a2_2-(

a2_1/a1_1)*a1_2))*(a2_3-(a2_1/a1_1)*a1_3))/((a3_3-(a3_1/a1_1)*a1_3)-((a3_2-(a3_1

/a1_1)*a1_2)/(a2_2-(a2_1/a1_1)*a1_2))*(a2_3-(a2_1/a1_1)*a1_3)))*((b3-(a3_1/a1_1)

*b1)-((a3_2-(a3_1/a1_1)*a1_2)/(a2_2-(a2_1/a1_1)*a1_2))*(b2-(a2_1/a1_1)*b1))) ;

The expression of B4 computation after Salsa is given below. Note that this transformation depends

on the given interval values of aij and bi collected by the parser and that we would obtain a different

expression for another family of systems.

float B_4 =((((b3-(b1*(a3_1/a1_1)))-((b2-(b1*(a2_1/a1_1)))*((a3_2-(a1_2*(a3_1/a1_1))

)/(a2_2-(a1_2*(a2_1/a1_1))))))*(((a4_3-(a1_3*(a4_1/a1_1)))-((a2_3-(a1_3*(a2_1/a1_1))

)*((a4_2-(a1_2*(a4_1/a1_1)))/(a2_2-(a1_2*(a2_1/a1_1))))))/-((a3_3-(a1_3*(a3_1/a1_1))

)-((a2_3-(a1_3*(a2_1/a1_1)))*((a3_2-(a1_2*(a3_1/a1_1)))/(a2_2-(a1_2*(a2_1/a1_1))))))

))+((b4-(b1*(a4_1/a1_1)))-((b2-(b1*(a2_1/a1_1)))*((a4_2-(a1_2*(a4_1/a1_1)))/(a2_2-(

a1_2*(a2_1/a1_1)))))));

Note that ai j and bi are the elements of our linear system.

• 2. At the end of the Gaussian elimination process, we obtain an equivalent upper triangular

linear system named [S]′: [A]′x=[b]′.

• 3. BSubSynthesis([A]′,[b]′): Produces a numerically certified code for the back substitu-

tion resolution of the upper triangular system [A]′x=[b]′. It construct the back substitution

code on all the abstract syntactic structure of components of x and gives it to Salsa. At end

of the Salsa transformation, the routine replaces the old piece of code by the accurate one

given by Salsa.

8

Example: In this example, we give a piece of code for x2 computation, which is the second

component of the unknown x of a linear 6-size system. The expression of x2 computation given by

our synthesizer before Salsa is:

float x_2=(B2-((((A2_6*(B6/A6_6))+A2_5*(B5-(A5_6*(B6/A6_6)))/A5_5)+A2_4*(B4-((A4_6

(B6/A6_6))+A4_5(B5-(A5_6*(B6/A6_6)))/A5_5))/A4_4)+A2_3*(B3-(((A3_6*(B6/A6_6))+

A3_5*(B5-(A5_6*(B6/A6_6)))/A5_5)+A3_4*(B4-((A4_6*(B6/A6_6))+A4_5*(B5-(A5_6*(B6/

A6_6)))/A5_5))/A4_4))/A3_3))/A2_2;

After Salsa transformation, we have the expression below. Again this depends on the interval values

of the variables.

float TMP_1 = A5_6;

float TMP_2 = (B6/A6_6);

float x_2=((B2-((((A2_6*(B6/A6_6))+(A2_5*((B5-(A5_6*(B6/A6_6)))/A5_5)))+(A2_4*((B4-

((A4_6*(B6/A6_6))+(A4_5*((B5-(A5_6*(B6/A6_6)))/A5_5))))/A4_4)))+(A2_3*((B3-(((A3_6

(B6/A6_6))+(A3_5((B5-(A5_6*(B6/A6_6)))/A5_5)))+(A3_4*((B4-((A4_6*(B6/A6_6))+(

A4_5*((B5-(TMP_1*TMP_2))/A5_5))))/A4_4))))/A3_3))))/A2_2);

Where Ai j and Bi are the elements of the equivalent upper linear system obtained by the Gaussian

elimination process.

• 4. C-program implementation: Finally, the tool extracts all the former information and builds

a C-program whose execution will give a more accurate solution for any system belonging to

the family of systems corresponding to the interval equation [A]x=[b].

4. Numerical experimentations

The aim of this section is to present several numerical simulations which illustrate the perfor-

mance and the efficiency of our tool, Rock-N-Roll, introduced in Section 3. Obviously, we aim at

evaluating how much the numerical accuracy is improved but also the impact on the execution time.

To do this, we have taken two examples based on two physical problems arising in Mechanics: The

flexion of a beam fixed on its extremities and the compression of a viscoelastic body against a moving

foundation. In both cases, the discretization is based on the finite element method (FEM) that was

usually used to solve complicated problems in engineering, notably in elasticity and structural Me-

chanics modeling involving elliptic PDEs and complicated geometries. Note that the linear systems

come from a Fortran computer code based on a MODULar Finite Element library (MODULEF)1.

4.1. Flexion of a beam

The first example consists of an academic but relevant mechanical problem which concerns the

flexion of an 1D elastic beam with Dirichlet boundary conditions on its extremities where the physical

setting is depicted in Figure 6 (for homogeneous Dirichlet boundary conditions).

1https://www.rocq.inria.fr/modulef/english.html

9

α=0 β=0

f

u(x)

Figure 6: Physical setting of the flexion of a 1D beam.

To do that let us consider the following very simple 1D model problem which consist to find a

displacement u ∈ C2([0, 1],R) such that,

{

−u′′(x) = f ∀x ∈]0, 1[

u(0) = α and u(1) = β,
(4.1)

where f is a constant vertical force acting on the domain interval Ω = [0, 1]. In order to discretize

the 1D elastic beam problem (4.1) and thus to obtain the related linear system, we use the finite

element method. To do that, we have to introduce the mesh of the domain Ω = [0, 1] by considering

N + 1 nodes {xi, i = 1, .., N + 1} of the interval [0, 1] with x1 = 0, xN+1 = 1 and xi+1 = xi + hi,

for i = 1, .., N where h = max1≤i≤N{hi} is the mesh size. Therefore, the domain [0, 1] is discretized

into N nonuniform intervals (xi, xi+1) that are the finite elements of size hi. Then, we consider

the simplest finite dimensional space that is to say the piecewise continuous linear function space

defined over the mesh of the domain Ω = [0, 1]. Thus, after elementary calculus (see [11] and [12])

we finally obtain the following tridiagonal systems,

















1
h1

+ C −1
h1

−1
h1

1
h1

+ 1
h2

−1
h2

. . .
. . .

. . .
−1

hN−1

1
hN−1

+ 1
hN

−1
hN

1
hN

−1
hN

+ C































u1

u2

...

uN

uN+1















= f
2















h1 + Cα

h1 + h2

...

hN−1 + hN

hN + Cβ















where C is a large penalization value in order to take into account the boundary conditions at x = 0

and x = 1.

In such type of problem, it is well known that the previous linear system is ill-conditioned and the

condition number of the matrix is related to the max1≤i≤N{
1
hi

}. For this reason, it is an interesting

example to test the Gauss Pivoting algorithm developed in Section 3. For our experiment, we

considered that f = −20N/m2, max1≤i≤N{
1
hi

} = 106, the penalization value C = 106 and that

the beam is fixed on its extremities (α = β = 0). First we created different linear systems of size

4 6 N 6 40. Then, we calculated the solution of each system by the C-program given by our tool

Rock-N-Roll: xRNR and by a classical Gauss pivoting method program: xCG. Finally, in order to

highlight the differences between solutions, we computed and displayed in Figure 7 the relative error

RelErr(x) =
‖A ∗ x− b‖2

‖b‖2
of each solution.

10

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40

||
A

*x
 -

 b
||
/|
|b

||

Matrix size

x-RNR

x-CG

Figure 7: Behavior of the relative errors of the solutions

We can observe a significant difference between the curves corresponding to RelErr(xRNR) and

RelErr(xCG), which are calculated with xRNR and xCG respectively. We see that the difference in

accuracy between the results of the two methods is of the order of 5× 10−6 on average. We can also

see that the increase of the error is more regular and smoother with the solution calculated by the

program generated by Rock-N-Roll.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30 35 40

T
im

e
 S

e
c
o

n
d

s

Matrix Size

RNR-C-program

CG-C-program

Figure 8: Execution time measurements of C-program generated by RNR and classical Gauss C-
program

11

For execution time measurements, all the programs have been written in the C language and

compiled with GCC 4.9.2-03, and executed on Intel Core i7 in IEEE754 single precision in order

to emphasize the effect of the finite precision. The results displayed in Figure 8 show that by

synthesizing Gauss pivoting code, we improve not only its accuracy but we reduce its execution time

too. This is mainly due to the fact that the systems from coming from our mechanical problem

are sparse and that is the case, Rock-N-Roll is able to simplify the computation and to remove all

the zero terms. For instance, in the examples of Section 3.3 some zero terms have been removed in

the expression of x2 and B4 otherwise we would have a far more larger expression. The program

synthesized by Rock-N-Roll contains far less computations then the original one. Remark that the

computing time necessary for the obtention of the synthesizing Gauss pivoting code is not taken into

account for the execution time measurements of the linear systems.

4.2. A frictional contact problem with a moving foundation

In this second example, we consider a non-trivial problem which describes the sliding contact

of a 2D viscoelastic body against a moving foundation. Without going into details, we can say

that the problem is discretized by combining the finite difference method and the finite element

method for the time interval and the space domain, for more details about the discretization, we

can refer to [13, 19]. Since frictional contact conditions are considered, the problem is non-linear

and a Newton type method can be used to linearize it. Then, the resulting linearized problems are

ill-conditioned and have to be solved by a robust and accurate numerical algorithm. For this reason,

the linearized subproblems obtained at each Newton iterations are solved by the Gauss Pivoting

algorithm developed in Section 3 and compared to the classical one. As for the first example, it is

obvious that other methods of resolution (as preconditioned conjugated gradient for instance) can

be used to solve such kind of systems. In this problem, the ill-conditioning comes from the frictional

contact conditions that leads to large terms in the linearized systems related to the numerical

treatment (augmented Lagrangian method and penalization method) of these non-smooth and non

linear boundary conditions.

Ω deformable body

Γ1

f
2

Γ
3

contact interface

x
2

x1

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Γ2

g

v*

crust

moving foundation

asperities

rigid
material

Figure 9: Physical setting of the sliding frictional contact problem.

The physical setting used for this problem is depicted in Figure 9. Here, we consider the frictional

contact between a deformable body and a moving foundation. This specific foundation is composed

by a rigid material covered by a thin crust and a deformable layer of asperities of depth g. Here

12

g represents the maximum value of the allowed penetration in the foundation. When this value of

penetration is reached, the contact follows a unilateral condition without any additional penetration.

Since the foundation is moving the friction condition is in a slip status within the Coulomb’s form.

The deformable body is a rectangle, Ω = (0, 2)× (0, 1) ⊂ R
2, and its boundary Γ is split as follows:

Γ1 = ({0} × [0, 1]), Γ2 = ((0, 2)× {1}) ∪ ({2} × [0, 1)), Γ3 = (0, 2]× {0}. The domain Ω represents

the cross section of a three-dimensional linearly viscoelastic body subjected to the action of tractions

in such a way that a plane stress hypothesis is assumed. On the part Γ1 the body is clamped and,

therefore, the displacement field vanishes there. Vertical compressions act on the part (0, 2) × {1}

of the boundary Γ2 and the part ({2} × [0, 1)) is traction free. Constant vertical body forces are

assumed to act on the viscoelastic body. The body is in frictional contact with an obstacle on the

part Γ3 of the boundary. For the numerical simulations, all the data concerning the problem can be

found in [4].

In Figure 10, we present the two deformed configurations of the body with respect to two opposite

velocities of the moving foundation.

moving foundation

v*v*

moving foundation

Figure 10: Deformed meshes with respect to two opposite velocities of the moving foundation.

For this second example, in order to illustrate the efficiency of the Rock-N-Roll tool we consider

the first linearized system generated during the last iteration of the Newton solver. This linear

system has the particularity to be non-symmetric due to the presence of friction terms, and ill-

conditioned because of the augmented Lagrangian approach for the treatment of frictional contact

conditions. (see [1, 4, 9, 13]).

matrix size 10 16 22 28

‖A ∗ xRNR − b‖2
‖b‖2

1.33974e-08 5.99737e-07 4.41512e-07 1.67206e-07

‖A ∗ xCG − b‖2
‖b‖2

8.02164e-06 9.12376e-05 5.62905e-05 3.55948e-05

Table 1: Behavior of the relative errors of the solutions.

matrix size 10 16 22 28

Synthesized Gauss pivoting (seconds) 0.252621 0.261653 0.266668 0.278529
Classical Gauss pivoting method (seconds) 0.328312 0.349035 0.363256 0.410162

Table 2: Execution time measurements of C-program generated by Rock-N-Roll and classical Gauss
C-program.

13

In Table 1 and Table 2, the relative errors and execution times have been computed and displayed

respectively, both for the classical Gauss pivoting method and for the C-program generated by our

Rock-N-Roll tool with respect to 4 different sizes. As for the first example, a significant difference

between the two methods is observed in favor of Rock-N-Roll. In Table 1, we see that the difference

in accuracy is of order of 10−2. The results displayed in Table 2 show that the C-program of Gauss

pivoting method generated by Rock-N-Roll is faster. We can see a 30% increase (for the resolution

time) for the classical Gaussian pivoting method whereas this increase is only 2% for the C-program

of Gauss pivoting method implemented by our synthesizer Rock-N-Roll.

5. Conclusion

In this article, we have introduced a synthesized Gauss pivoting method implemented in

Rock-N-Roll, an automatic synthesizer tool to improve the numerical accuracy of linear systems

resolution, specifically systems coming from mechanical problems. We have detailed its architecture,

and the different inputs and the outputs that it supports. We have tested Rock-N-Roll across

experimental results obtained on two examples coming from two different mechanical problems with

and without contact. The results obtained show the efficiency of our synthesized Gauss pivoting

method which improves the numerical accuracy of computations compared to the classical Gauss

pivoting method, so as the execution time. An interesting perspective consists of extending our work

to synthesize Gauss pivoting method on partitioned matrices and also parallel. In this direction, we

aim at solving the large matrices size problems. Furthermore, as prospect it would be interesting

to add the conjugated gradient and the double conjugated gradient methods to our Rock-N-Roll.

Taking into account non linear solvers as Newton type methods would be very challenging in the

framework of numerical accuracy.

References

[1] P. Alart and A. Curnier, A mixed formulation for frictional contact problems prone to Newton

like solution methods, Comput. Meth. Appl. Mech., Engrg. 92, 353-375, 1991.

[2] ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic. ANSI/IEEE, std 754-2008

edition, 2008.

[3] Atkinson, Kendell A. An introduction to numerical analysis (2nd ed.). John Wiley and Sons.

ISBN 0-471-50023-2, 1998.

[4] M. Barboteu & Y. Souleiman, Numerical Analysis of a Sliding frictional contact problem with

Normal Compliance and Unilateral Contact, submitted toMathematical Methods in the Applied

Sciences, Wiley.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analy-

sis of programs by construction or approximation of fixpoints. In Principles of Programming

Languages, pages 238–252. ACM Press, 1977.

[6] N. Damouche, M. Martel, and A. Chapoutot. Intra-procedural optimization of the numerical

accuracy of programs. In FMICS’15, volume 9128 of LNCS, pages 31–46. Springer, 2015.

[7] D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM

Computing Surveys, 23(1), Mar, 1991.

[8] Grossmann, Christian, Roos, Hans-G., Stynes, Martin. Numerical Treatment of Partial Differ-

ential Equations. Springer. ISBN 978-3-540-71584-9, 2007.

14

[9] J. Haslinger and I. Hlavácek, Numerical Methods for Unilateral Problems in Solid Mechanics,

in Handbook of Numerical Analysis, J.-L. Lions and P. Ciarlet, eds., Vol IV, North-Holland,

Amsterdam, 313–485, 1996.

[10] A. Ioualalen and M. Martel. A new abstract domain for the representation of mathematically

equivalent expressions. In SAS’12, volume 7460 of LNCS, pages 75–93. Springer, 2012.

[11] T. JR. Hughes, The finite element method, Prentice Hall, 1987.

[12] N. Kikuchi, Finite element methods in Mechanics, Cambridge, 1986.

[13] T. Laursen, Computational Contact and Impact Mechanics, Springer, Berlin, 2002.

[14] M. Martel. Semantics of roundoff error propagation in finite precision calculations. Higher-Order

and Symbolic Computation, 19(1):7–30, 2006.

[15] Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improving accuracy

for floating point expressions. In: PLDI. pp. 1–11. ACM, 2015.

[16] Saad, Yousef. Iterative methods for sparse linear systems (2nd ed.). Philadelphia, Pa.: Society

for Industrial and Applied Mathematics. p. 195. ISBN 978-0-89871-534-7, 2003.

[17] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical

Society Lecture Note Series 398, Cambridge University Press, Cambridge, 2012.

[18] M. Sofonea & Y. Souleiman, A Viscoelastic Sliding Contact Problem with Normal Compliance,

Unilateral Constraint and Memory Term, Mediterranean Journal of Mathematics. 13, 2863–

2886, 2016.

[19] P. Wriggers, Computational Contact Mechanics, Wiley, Chichester, 2002.

15

