
Data-Types Optimization for Floating-Point Formats
by Program Transformation⋆

Nasrine Damouche
University of Perpignan

LAboratory of Mathematics and PhysicS
52 Avenue Paul Alduy

66860 Perpignan, France
Email: nasrine.damouche@univ-perp.fr

Matthieu Martel
University of Perpignan

LAboratory of Mathematics and PhysicS
52 Avenue Paul Alduy

66860 Perpignan, France
Email: matthieu.martel@univ-perp.fr

Alexandre Chapoutot
U2IS, ENSTA ParisTech
Paris-Saclay University
828 bd des Maŕechaux
91762 Palaiseau, France

alexandre.chapoutot@ensta-paristech.fr

Abstract—In floating-point arithmetic, a desirable property of
computations is to be accurate, since in many industrial context
small or large perturbations due to round-off errors may cause
considerable damages. To cope with this matter of fact, we have
developed a tool which corrects these errors by automatically
transforming programs in a source to source manner. Our
transformation, relying on static analysis by abstract abstraction,
concerns pieces of code with assignments, conditionals and loops.
By transforming programs, we can significantly optimize the
numerical accuracy of computations by minimizing the error
relatively to the exact result. An interesting side-effect of our
technique is that more accurate computations may make it
possible to use smaller data-types. In this article, we show that our
transformed programs, executed in single precision, may compete
with not transformed codes executed in double precision.

I. I NTRODUCTION

The floating-point numbers described by IEEE754 Stan-
dard [1], [16] are more and more used in many industrial
applications, including critical embedded software. In these
computations, a recurrent problem appears because of round-
off errors that reduce the accuracy of the results. This pertur-
bation becomes particularly crucial when accumulated errors
cause damages whose gravity varies depending on the context
of the application. Obviously, embedded software is not the
only applicative domain concerned by these accuracy problems
which are ubiquitous in all numerical scientific computations.
In the light of this problem, we correct these errors by automat-
ically transforming programs in a source to source manner. Ba-
sically, we transform not only arithmetic expressions but also
pieces of code containing assignments, conditionals, loops and
sequences of commands. Our transformation significantly im-
proves the numerical accuracy of the program considered. To
optimize programs, we generate large arithmetic expressions
corresponding to the computations of the original program
and further, we consider many expressions mathematically
equivalent to the original ones in order to, finally, choose a
more accurate among them in polynomial time.

There exists several methods for validating [3], [7], [8],
[10], [20] and improving [12], [17] the accuracy of numerical

⋆This work was supported by the ANR Project ANR-12-INSE-0007
”CAFEIN”.

codes in order to avoid failures. Here, as in our previous
work, we rely on static analysis by abstract interpretation[4]
to compute variable ranges and error bounds. We use a set
of transformation rules for arithmetic expressions and com-
mands [6]. These rules, which are applied in a deterministic
order, allow one to obtain a more accurate code among all
these which are considered. We have shown that the numerical
accuracy of our case study programs is significantly improved.
In most cases it is about of20%.

In this paper, we propose a new experiment, that compares
the optimized programs obtained by our tool and executed
in single precision to the initial programs executed in both
single and double precision. Our main contribution is to show
that the transformed programs in single precision are closeto
the original programs in double precision. This offers to the
programmer the possibility to degrade to the single precision
data-type without loosing much information. To ensure thatour
tool is useful in practice, we write the source and transformed
program inC and compile them by using GCC Compiler.

This article is organized as follows. We first review in
Section II the basics of our transformation method based on
floating-point arithmetic. We explain briefly how to transform
arithmetic expressions. We then introduce in Section III the
different transformation rules that allow us to automatically
transform programs. We present in Section IV our main
contribution which demonstrates the interest of the comparison
between single, double precision and optimized codes. We
illustrate this with some experiments concerning the computa-
tion of the integral of a polynomial using Simpson’s Rule [2].
Related work is discussed in Section V. Finally, we give some
concluding remarks and perspectives in Section VI.

II. A NALYSIS AND TRANSFORMATION OFEXPRESSIONS

In this section we introduce the background needed to
understand our approach to improve the numerical accuracy of
programs. We recall the key notions on our way of computing
the rounding errors on floating-point arithmetic expressions.
Next, we briefly explain how to transform arithmetic expres-
sions using an intermediary representation called APEGs.

A. Static Analysis of Arithmetic Expressions

Floating-point numbers are used to represent real numbers.
Because of their finite representation, round-off errors arise978-1-5090-2188-8/16/$31.00c©2016 IEEE

during the computations which may cause damages in critical
contexts. IEEE754 Standard formalizes a binary floating-point
number as a triplet of sign (s∈ {0, 1}), significand and
exponent. We consider that a numberx is written:

x = s · (d0.d1 . . . dp−1) · b
e = s ·m · be−p+1 , (1)

where, s is the sign∈ {−1, 1}, m is the mantissa,m =
d0.d1 . . . dp−1 with digits 0 ≤ di < b, 0 ≤ i ≤ p − 1, p
is the precision, ande is the exponent∈ [emin, emax].

A floating-point numberx is normalizedwheneverd0 6= 0.
Normalization avoids multiple representations of the same
number. IEEE754 Standard specifies some particular values for
p, emin andemax which are summarized in Figure 1 as well
as denormalized numberswhich are floating-point numbers
with d0 = d1 = . . . = dk = 0, k < p − 1 and e = emin.
Denormalized numbers make underflow gradual [9]. Finally,
the following special values also are defined:

• NaN (Not a Number) result of an invalid operation,

• the values±∞ corresponding to overflows,

• the values+0 and−0 (signed zeros).

Format Name p e bits emin emax

Binary16 Half precision 11 5 −14 +15
Binary32 Single precision 24 8 −126 +127
Binary64 Double precision 53 11 −1122 +1223
Binary128 Quadratic precision 113 15 −16382 +16383

Fig. 1. Basic IEEE754 formats.

IEEE754 Standard defines four rounding modes for ele-
mentary operations over floating-point numbers. These modes
are towards−∞, towards+∞, towards zero and to the nearest
respectively denoted by↑+∞, ↑−∞, ↑0 and↑∼. The semantics
of the elementary operations specified by IEEE754 Standard
is given by Equation (2).

x⊛r y =↑r (x ∗ y) , with ↑r: R → F (2)

where a floating-point operation, denoted by⊛r ∈
{+,−,×,÷}, is computed using the rounding moder and
∗ denotes an exact operation. Obviously, the results of the
computations are not exact because of the round-off errors.
This is why, we use also the function↓r: R → R that returns
the round-off errors. We have

↓r (x) = x− ↑r (x) . (3)

In order to compute the errors during the evaluation of
arithmetic expressions [14], we use values which are pairs
(x, µ) ∈ F×R = E wherex denotes the floating point number
used by the machine andµ denotes the exact error attached
to F, i.e., the exact difference between the real and floating-
point numbers as defined in Equation (3). For example, the real
number13 is represented by the valuev = (↑∼

(

1
3

)

, ↓∼
(

1
3

)

) =
(0.333333, (13 − 0.333333)). The semantics of the elementary
operations onE is defined in [14].

Our tool uses an abstract semantics [4] based onE. The
abstract values are represented by a pair of intervals. The first
interval contains the range of the floating-point values of the
program and the second one contains the range of the errors
obtained by subtracting the floating-point values from the exact

ones. In the abstract value denoted by (x♯, µ♯) ∈ E
♯, we have

x♯ the interval corresponding to the range of the values and
µ♯ the interval of errors onx♯. This value abstracts a set of
concrete values{(x, µ) : x ∈ x♯ andµ ∈ µ♯} by intervals
in a component-wise way. We now introduce the semantics of
arithmetic expressions onE♯. We approximate an intervalx♯

with real bounds by an interval based on floating-point bounds,
denoted by↑♯ (x♯). Here bounds are rounded to the nearest,
see Equation (4).

↑♯ ([x, x]) = [↑ (x), ↑ (x)] . (4)

We denote by↓♯ the function that abstracts the concrete
function ↓. It over-approximates the set of exact values of the
error ↓ (x) = x− ↑ (x). Every error associated tox ∈ [x, x]
is included in↓♯ ([x, x]). We also have for a rounding mode
to the nearest

↓♯ ([x, x]) = [−y, y] with y =
1

2
ulp

(

max(|x|, |x|)
)

. (5)

Formally, theunit in the last place, denoted by ulp(x), consists
of the weight of the least significant digit of the floating-
point numberx. Equations (6) to (7) give the semantics of
the addition and multiplication overE♯, for other operations
see [14]. If we sum two numbers, we must add errors on the
operands to the error produced by the round-off of the result.
When multiplying two numbers, the semantics is given by the
development of(x♯

1 + µ♯
1) × (x♯

2 + µ♯
2).

(x
♯
1, µ

♯
1) + (x

♯
2, µ

♯
2) =

(

↑
♯
(x

♯
1 + x

♯
2), µ

♯
1 + µ

♯
2+ ↓

♯
(x

♯
1 + x

♯
2)
)

, (6)

(x♯
1
, µ

♯
1
) × (x♯

2
, µ

♯
2
)

=
(

↑♯ (x♯
1
× x

♯
2
), x♯

2
× µ

♯
1
+ x

♯
1
× µ

♯
2
+ µ

♯
1
× µ

♯
2
+ ↓♯ (x♯

1
× x

♯
2
)
)

.

(7)

B. Accuracy Improvement

The work in [12] concerns the definition of a new in-
termediary representation called APEG for Abstract Program
Expression Graph. This approach represents in a polynomial
size an exponential number of equivalent arithmetic expres-
sions. Because APEGs hold in abstraction boxes many equiva-
lent expressions up to associativity and commutativity, hence,
it prevents the combinatorial problem. A box containingn
operands can represent up to1× 3× 5...× (2n− 3) possible
formulas. In order to build large APEGs, two algorithms are
used (propagation and expansionalgorithm). The first one
searches recursively in the APEG where a symmetric binary
operator is repeated and introduces abstraction boxes. Then,
the second algorithm finds a homogeneous part and inserts a
polynomial number of boxes. In order to add new shapes of ex-
pressions in an APEG, one propagates recursively subtractions
and divisions into the concerned operands, propagate products,
and factorizing common factors. Finally, an accurate formula
is searched among all the equivalent formulas represented
in an APEG using the abstract semantics of Section II-A.
The APEGs are an extension of the Equivalence Program
Expression Graphs (EPEGs) introduced by R. Tateet al. [21].
An APEG is defined inductively as follows:

1) A constantcst or an identifierid is an APEG,
2) An expressionp1 ∗ p2 is an APEG, wherep1 andp2 are

APEGs and∗ is a binary operator among{+,−,×,÷},

3) A box ∗(p1, . . . , pn) is an APEG, where∗ ∈ {+,×} is
a commutative and associative operator and thepi,1≤i≤n,
are APEGs,

4) A non-empty set{p1, . . . , pn} of APEGs consists in an
APEG wherepi,1≤i≤n, is not a set of APEGs itself. We
call the set{p1, . . . , pn} the equivalence class.

An example of APEG is given in Figure 2, it represents all
the following expressions:

2 a

×

+

b

□

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Fig. 2. APEG for the expressione =
(

(a+ a) + b
)

× c.

A(p) =

(

(a + a) + b
)

× c,
(

(a + b) + a
)

× c,
(

(b + a) + a
)

× c,
(

(2 × a) + b
)

× c,

c ×
(

(a + a) + b
)

, c ×
(

(a + b) + a
)

,

c ×
(

(b + a) + a
)

, c ×
(

(2 × a) + b
)

,
(a + a) × c + b × c, (2 × a) × c + b × c,
b × c + (a + a) × c, b × c + (2 × a) × c

. (8)

R. Tateet al. in their article [21], use rewriting rules to extend
the structure up to saturation. In our context, such rules would
consist of performing some pattern matching in an existing
APEG p and then adding new nodes inp, once a pattern has
been recognized.

III. T RANSFORMATION OFCOMMANDS

In this section, we introduce the transformation rules,
implemented in our tool and used to improve the numerical
accuracy of programs. The syntax of commands is given by:

Com ∋ c ::= id = e | c1; c2 | ifΦ e then c1 else c2

| whileΦ e do c | nop , (9)

wheree is an expression inExpr made of arithmetic opera-
tions and comparison. The principle of the transformation of
commands relies on a set of hypotheses:

• Programs are defined by a tuple

〈c, δ, C, β〉 →ν 〈c′, δ, C, β〉 :

◦ c is the program at optimizing,
◦ δ the formal environment that maps variables

to expressions (δ: V 7→ Expr),
◦ C is the context, i.e., the program enclosing

the command to transform,
◦ β is the black list that contains variables that

must not be removed from the program,
◦ ν is the reference variable at optimizing,

• Programs are written in SSA form (single static as-
signments),

• Transformation rules are applied deterministically,

• The best program, the most accurate, is obtained by
comparing the reference variable of the original and
transformed program.

Here, we survey briefly the different kinds of transformation
rules. We refer the interested reader to [6] to see the details of
these transformation rules based on the syntax and semantics.
We start with the assignments. We have two rules, the first
consists in removing the assignment from the program and
saving it in the memoryδ if the conditions below are verified:

a) The variables of the expressione does not appear inδ,
b) The variablev does not belong to the black listβ,
c) The variablev is different of the reference variableν.

Otherwise, we build a large expression by substituting in
it the formal expressions memorized previously by the first
rule in δ. Remark that by inlining expressions in variables
when transforming programs, we create large formulas. In our
implementation, in order to facilitate their manipulation, we
slice these formulas, at a defined level of the syntactic tree, in
several sub-expressions, and we assign them to intermediary
variables. Finally, we inject these new assignments into the
main program.

Example 3.1:To explain the use of the transformation
rules of assignments, let us consider Equation (10) in which
three variablesx, y and z are assigned. In this example,ν
consists of the variablez that we aim at optimizing, and
a = 0.1, b = 0.01, c = 0.001 andd = 0.0001 are constants.

〈x = a + b; y = c + d; z = x + y, δ, [], {z}〉

=⇒ν 〈nop; y = c + d; z = x + y, δ′ = δ[x 7→ a + b], [], {z}〉
=⇒ν 〈y = c + d; z = x + y, δ′ = δ[x 7→ a + b], [], {z}〉
=⇒ν 〈nop; z = x + y, δ′′ = δ′[y 7→ c + d], [], {z}〉
=⇒ν 〈z = x + y, δ′′ = δ′[y 7→ c + d], [], {z}〉
=⇒ν 〈z = ((d + c) + b) + a, δ′′, [], {z}〉

(10)

In Equation (10), initially, the environmentδ is empty, the
black list containsz and the reference variableν at optimizing
is z. If we apply the first rule of assignment, we may remove
the variablex and memorize it inδ. So, the line corresponding
to the variable discarded is replaced bynop and the new
environment isδ = [x 7→ a + b]. We then repeat the same
process, we remove the variabley and saved it inδ. Next, we
apply a rule for sequences which discards thenop statement.
For the last step, we may not discardz because the condition
is not satisfied (z = ν). Then, we substitutex andy by their
value inδ and we transform the expression. �

Another kind of transformation rules is for the sequences of
commands. If one member of the sequence isnop, then we
transform only the other member, else, we transform both
of them. Our implementation transforms also conditionals.
If the condition is statically known, then we keep just the
evaluated branch and we transform it, else, we transform both
branches of the conditional. In some cases, we deal with
undefined variables because they have been discarded from the
program and saved in the environmentδ as indicated in the first
transformation rule for assignments. We then re-inject them
into the program and we do the necessary transformations.
The next transformation rules concern thewhile loop. We
transform the body of the loop ensuring that the variables ofthe
condition do not belong to the environmentδ. Otherwise, we
have to re-insert the variables memorized in the environment
into the program as doing for the last rule of conditionals.

At the end of this section, we deal with complexity
considerations. As underlined previously, only one rule may
be selected at each step of the transformation of a program
p. Consequently, the transformation would be linear in the
size n, i.e., the number of lines, ofp if we would not re-
inject assignments. However, a given assignment cannot be
removed twice, so the transformation is quadratic. Finally, the
entire transformation of a programp is repeated until nothing
changes, that is at mostn times. Hence, the global complexity
for a program transformation of sizen is O(n3).

IV. EXPERIMENTS

We have implemented a tool based on the rules of Sec-
tion III to improve the numerical accuracy of the floating-
point computations. This tool finds a more accurate program
among all those equivalent. In this section, we emphasize the
efficiency of our implementation in terms of improving the
data-types used by the programs. More precisely, we show
that by using our tool, we approximate the results to be ever
accurate and close to the results obtained under the double
precision while using single precision.

In the light of these ideas, let us confirm our claims by
means of a small examples such as Simpson’s method. We
start by briefly describing what our program computes, and
then we give their listing before and after being optimized
with our tool. Their accuracy is then discussed. Note that our
programs are written in SSA form [5] to avoid any problem
dealing with the reading and writing variables.

A. Problem Description and Simpson’s Method

Simpson’s method consists in a technique for numerical

integration that approximates the computation of
∫ b

a

f(x) dx.

It uses a second order approximation of the functionf by a
quadratic polynomialP that takes three abscissa pointsa, b
andm with m = (a+ b)/2. When integrating the polynomial,
we approximate the integral off on the interval[x, x + h]
(h ∈ R small) with the integral ofP on the same interval.
Formally, the smaller the interval is, the better the integral
approximation is. Consequently, we divide the interval[a, b]
into subintervals[a, a + h], [a + h, a + 2h], . . . and then we
sum the obtained values for each interval. We write:
∫

b

a

f(x) dx ≈
h

3

[

f(x0) + 2

n
2

−1
∑

j=1

f(x2j) + 4

n
2

∑

j=1

f(x2j−1) + f(xn)
]

(11)

where

• n is the number of subintervals of [a,b] withn is even,

• h = (b− a)/n is the length of the subintervals,

• xi = a+ i× h for i = 0, 1, . . . , n− 1, n.

In our case, we have chosen the polynomial given in
Equation (12). It is well-known by the specialists of floating-
point arithmetic that the developed form of the polynomial
evaluates very poorly close to a multiple root. This motivates
our choice of the functionf below for our experiments.

f = (x − 2.)7

= x7 − 14. × x6 + 84. × x5 − 280. × x4

+ 560. × x3 − 672. × x2 + 448. × x − 128.

. (12)

The listing corresponding of the implementation of the
Simpson’s method is described on Figure 3.

int main() {
a = 1.9; b = 2.1; n = 100.0; i = 1.0; x = a; h = (b - a)/n;
f = ((x*x*x*x*x*x*x) - 14.0 * (x*x*x*x*x*x) + 84.0 * (x*x*x

* x*x) - 280.0 * (x*x*x*x) + 560.0 * (x*x*x) - 672.0 * (x

* x) + 448.0 * x - 128.0);
x = b ;
g = ((x*x*x*x*x*x*x) - 14.0 * (x*x*x*x*x*x) + 84.0 * (x*x*x

* x*x) - 280.0 * (x*x*x*x) + 560.0 * (x*x*x) - 672.0 * (x
* x) + 448.0 * x - 128.0);

s = f + g;
while (i < n) {
x = a + (i * h);
f = ((x*x*x*x*x*x*x) - 14.0 * (x*x*x*x*x*x) + 84.0 * (x*x

* x*x*x) - 280.0 * (x*x*x*x) + 560.0 * (x*x*x) - 672.0

* (x*x) + 448.0 * x - 128.0);
s = s + 4.0 * f;
i = i + 1.0;

};
i = 2.0 ;
while (i < n-1) {
x = a + (i * h) ;
f = ((x*x*x*x*x*x*x) - 14.0 * (x*x*x*x*x*x) + 84.0 * (x*x

* x*x*x) - 280.0 * (x*x*x*x) + 560.0 * (x*x*x) - 672.0

* (x*x) + 448.0 * x - 128.0);
s = s + 2.0 * f;
i = i + 1.0;

};
s = s * (h / 3.0);

}

Fig. 3. Listing of the initial Simpson’s method.

int main() {
TMP_3 = 6.859 ;
TMP_1 = ((((((TMP_3 * 1.9) * 1.9) * 1.9) * 1.9) - (14.

* (((TMP_3 * 1.9) * 1.9) * 1.9))) + (84. * ((6.859
* 1.9) * 1.9)));

TMP_2 = (1.9 * (280. * TMP_3));
TMP_15 = 9.261000000000001;
TMP_13 = ((((((TMP_15 * 2.1) * 2.1) * 2.1) * 2.1) - (14.

* (((TMP_15 * 2.1) * 2.1) * 2.1))) + (84.
* ((9.261000000000001 * 2.1) * 2.1)));

TMP_14 = (2.1 * (280. * TMP_15));
TMP_27 = 3.61;
TMP_25 = ((((((TMP_27 * 1.9) * 1.9) * 1.9) * 1.9) * 1.9)

- (14. * ((((TMP_27 * 1.9) * 1.9) * 1.9) * 1.9)));
TMP_26 = (1.9 * (159.599999999999994 * TMP_3));
TMP_32 = (TMP_3 * 1.9);
i = 1.;
s = ((((((TMP_1 - TMP_2) + (560. * TMP_3))

- 2425.920000000000073) + 851.199999999999932) - 128.)
+ (((((TMP_13 - TMP_14) + (560. * TMP_15))
- 2963.520000000000437) + 940.800000000000068) - 128.));

f = ((((((TMP_25 + TMP_26) - (280. * TMP_32)) + (560.

* (TMP_27 * 1.9))) - (672. * TMP_27))
+ 851.199999999999932) - 128.);

x = 2.1;
while (i < 100.) {
x = (1.9 + (i * 0.002));
TMP_37 = (x * x);
TMP_35 = ((((((TMP_37 * x) * x) * x) * x) * x) - (14.

* ((((TMP_37 * x) * x) * x) * x)));
TMP_36 = (84. * (((TMP_37 * x) * x) * x));
TMP_42 = (x * (TMP_37 * x));
f = ((((((TMP_35 + TMP_36) - (280. * TMP_42)) + (560.

* (TMP_37 * x)))-(672. * TMP_37)) + (448. * x)) - 128.);
s = (s + (4. * f));
i = (i + 1.);

} ; [...]
s = (0.000666666666667 * s) ;

}

Fig. 4. Listing of the transformed Simpson method.

When given the initial program described in Figure 3 to
our tool, it improves its numerical accuracy by up to99%
depending on the entries. The transformed program is given
in Figure 4. As detailed in Section III, our tool has:

(a) (b)

(c) (d)

Fig. 5. Simulation results of the Simpson’s method with single,double precision and optimized program using our tool. The values ofx andy axes correspond
respectively to the value ofn ands in Equation 13.

• created large expressions,

• transformed them into more accurate expressions,

• performed partial evaluation of the expressions,

• split the transformed expressions,

• assigned the transformed expressions toTMP vari-
ables.

This process has been applied inside and outside the loop.

B. Experimental results

The experimental results described hereafter compare the
numerical accuracy of programs using single and double pre-
cision with a program transformed with our tool and running
single precision only. Note that the codes presented in this
article are written inC, compiled with theGCC compiler ver-
sion4.2.1 and executed by anIntel Core i7 processor
underUbuntu 15.04. In addition, programs are compiled

with the optimization level−o0 to avoid any optimization done
by the compiler and additionally, we enforce the copy in the
memory at each execution step by declaring all the variablesas
volatile (this avoids that values are kept in registers using
more than64 bits).

The results observed on Figure 5 when executing the initial
program in single and double precision and the transformed
program in single precision, demonstrate that our approach
succeeds well to improve the accuracy. If we interest in the
result of computations around the multiple root2.0, we can
see that the behavior of the optimized code is far closer to
the original program executed with a double precision than
the single precision original program. This shows that single
precision may suffices in many contexts.

In Figure 5, one can see the difference, for different values
of the steph > 0, in the computation of

s =

∫

a+nh

a

f(x) dx, 0 ≤ n <
b − a

h
(13)

between the original program with both single and double
precision and the transformed program (in single precision)
in terms of numerical accuracy of computations. Obviously,
the accuracy of the computations of the polynomialf(x)
depends on the values ofx. The more the value ofx is
close to the multiple root, the worst the result is. For this
reason, we make the interval[a, b] vary by choosing[a, b] ∈
{[1.9, 2.1], [1.95, 2.05], [1.95, 2.05]} and by choosing to split
them in n = 100, n = 100 and n = 250 slices respectively
for the application of Simpson’s rule. Concerning the results
obtained, our tool states that the percentage of the optimization
computed by the abstract semantics of Section II-A is up to
99.39%. This means that the bound (obtained by the technique
of Section II-A) on the numerical error of the computed values
of the polynomial at any iteration is reduced by99.39%.

Curve (d) of Figure 5 displays the functionf(x) at points
n = 1.9+0.02×i, 100 ≤ i ≤ 200. Next, if we take for example
Curve (b) of Figure 5, we observe that our implementation
is as accurate as the initial program in double precision for
many values ofn since it gives results very close to the double
precision while working in single precision. Note that, forthe
x − axis of Figure 5, we have chosen to observe only the
interesting interval ofn which is around the multiple root2.0.

V. RELATED WORK

Other research work tries to optimize the numerical data-
types or to increase the precision of computations. Duralova
and Kuncak use anSMT solver to determine the minimal data-
type needed to reach a certain accuracy [7]. For the fixed-point
arithmetic [18], an alternative to the floating-point arithmetic,
many approaches have been proposed to optimize the format
of the numbers [13], [15]. Another kind of work aims at in-
creasing the accuracy of computations by means of additional
calculations which significantly slow down the applications.
Double-double floating-point numbers emulate by software
numbers with twice the precision of the double hardware
format [11]. Finally, compensation techniques use error-free
transformations to capture the exact errors of floating-point
computations in order to re-inject the accumulated error inthe
result [19], [22].

VI. CONCLUSION

In this article, we have shown the usefulness of our imple-
mentation to improve the accuracy of programs. This allows
one to work in a lower precision and obtain results close to the
higher precision when transforming programs using our tool.
Our examples compare the result of transformed program with
the initial programs executed in single and double precision.
We believe that this approach is very promising according to
the different experiments results obtained.

Another research direction consists in the interprocedural
programs transformation, i.e., we aim at generalizing our
techniques to cover other kinds of programming language
patterns like pointers, arrays and, specially functions.

We hope also in a future work to optimize several reference
variables simultaneously. One difficulty is that the optimization
of one variable may decrease the accuracy of other variables.
Compromises have to be done. Another perspective consists
at studying the impact of the accuracy optimization on the

convergence time of distributed systems and also handle with
the important issue that concerns the reproducibility of the
results: different runs of the same application yield different
results due to the variations in the order of evaluation of the
mathematical expression. It will be very interesting to study
how our technique could improve reproducibility.

REFERENCES

[1] ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic, std
754-2008 edition, 2008.

[2] K.-E. Atkinson.An Introduction to Numerical Analysis. Second Edition,
1988.

[3] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival. Static analysis by abstract interpretation of embedded critical
software.ACM SIGSOFT Software Engineering Notes, 36(1):1–8, 2011.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In POPL’77, pages 238–252. ACM, 1977.

[5] R. Cytron and R. Gershbein. Efficient accomodation of may-alias
information in SSA form. InPLDI’93, pages 36–45. ACM, 1993.

[6] N. Damouche, M. Martel, and A. Chapoutot. Intra-procedural optimiza-
tion of the numerical accuracy of programs. InFMICS’15, volume 9128
of LNCS, pages 31–46. Springer, 2015.

[7] E. Darulova and V. Kuncak. Sound compilation of reals. InPOPL’14,
pages 235–248. ACM, 2014.

[8] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine.
Towards an industrial use of FLUCTUAT on safety-critical avionics
software. InFMICS’09, pages 53–69, 2009.

[9] D. Goldberg. What every computer scientist should know about
floating-point arithmetic.ACM Comput. Surv., 23(1):5–48, 1991.

[10] E. Goubault. Static analysis by abstract interpretation of numerical
programs and systems, and FLUCTUAT. InSAS’13, volume 7935 of
LNCS, pages 1–3. Springer, 2013.

[11] Y. Hida, X.-S. Li, and D.-H. Bailey. Algorithms for quad-double
precision floating point arithmetic. InARITH-15, pages 155–162. IEEE
Computer Society, 2001.

[12] A. Ioualalen and M. Martel. A new abstract domain for the representa-
tion of mathematically equivalent expressions. InSAS’12, volume 7460
of LNCS, pages 75–93. Springer, 2012.

[13] J.-L. Jerez, G.-A. Constantinides, and E.-C. Kerrigan. A low complexity
scaling method for the lanczos kernel in fixed-point arithmetic. IEEE
Trans. Computers, 64(2):303–315, 2015.

[14] M. Martel. Semantics of roundoff error propagation in finite precision
calculations.Higher-Order and Symbolic Comput., 19(1):7–30, 2006.

[15] D. Menard, N. Herv́e, O. Sentieys, and H. Nguyen. High-level synthesis
under fixed-point accuracy constraint.J. Electrical and Computer
Engineering, 2012:906350:1–906350:14, 2012.

[16] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lef̀evre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of
Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[17] J.-R. Wilcox P. Panchekha, A. Sanchez-Stern and Z. Tatlock. Automat-
ically improving accuracy for floating point expressions. InPLDI’15,
pages 1–11. ACM, 2015.

[18] R. Yates. Fixed-point Arithmetic: An Introduction., digital signal labs
edition, 2009.

[19] S.-M. Rump. Ultimately fast accurate summation.SIAM J. Scientific
Computing, 31(5):3466–3502, 2009.

[20] A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalakrishnan.
Rigorous estimation of floating-point round-off errors withsymbolic
taylor expansions. InFM’15, volume 9109 ofLNCS, pages 532–550.
Springer, 2015.

[21] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: A
new approach to optimization.Log. Meth. in Comp. Sci., 7(1), 2011.

[22] L. Thévenoux, P. Langlois, and M. Martel. Automatic source-to-source
error compensation of floating-point programs. InCSE’15, 2015.

