
ERTS 2006 – 25-27 January 2006 – Toulouse Page 1/11

Some future challenges in the validation of control systems

E.Goubault1, M. Martel1, S. Putot1

1: DTSI/SOL, CEA/Saclay, 91191 Gif-sur-Yvette

Abstract: Starting with our work on the
characterization of the imprecision error in programs
using floating-point-numbers, by abstract
interpretation, this paper shows that there are
numerous perspectives, if one wants to fully qualify
the numerical quality of control systems, as found in
the aeronautical and automotive industry, for
instance. Some very common functions (e.g.
integrators) are hard to statically analyse, because
their numerical correctness depend on a fine-
grained specification of the classes of input signals
they handle. This gets even more complex in the
case of e.g. PID controllers, which interact in closed
loop with an external environment, since their input
signals are in part the consequence of their own
computation, similarly for the imprecision errors. We
show examples of non-trivial bad and good
numerical behaviours, discuss the results of our
methods, and present our current research
directions, that should hopefully help characterize
the imprecision error of such control systems.

Keywords: floating-point numbers, imprecision
errors, static analysis, abstract interpretation.

1. Introduction

The research work in computer systems at CEA
originally started with the N4 generations of nuclear
plants controlled by software (and not hardwired as
previous generations). In particular, the emergency
stop in such nuclear plants is the most critical part,
which required huge validation efforts, fostering new
research both in conception and verification
methods, and still accounting for part of our current
developments, under the auspices of IRSN. Our
validation activity naturally applies to other critical
control systems, such as the ones in the automotive
and aeronautics industry. We will most notably take
as an example of our current research the Fluctuat
tool, currently evaluated and used both by IRSN and
Airbus.

Fluctuat is a static analyser by abstract
interpretation, which helps determine the
discrepancy in the numerical computations in a
control system, due to the use of an imperfect
arithmetic, the IEEE 754 floating-point numbers (and
more recently, fixed-point numbers as well), instead
of using the ideal real numbers. It takes as input a
piece of software (written in ANSI C, or in assembler,
for the TMS320C3X), some assertions describing
the range and precision of potential numerical inputs

to this program, and gives as a result an estimate of
the range and precision of all variables of the
program, at some location in the program, for all
possible inputs as specified, and without executing it.
Furthermore, this estimate, as guaranteed by the
general theory of abstract interpretation [7], is “sure”,
meaning that it is always an over-approximation of
the set of possible values and imprecision errors that
may arise during all potential (maybe infinite)
executions of the program. Both the underlying
theory and the tools themselves are described in [2],
[4], [1], [3]. They have been successfully applied to
some representative industrial control systems, but
these case studies lead us to consider new
challenges, both on the practical and theoretical
sides.

2. FLUCTUAT

2.1 The tool

The aim of Fluctuat is to either detect automatically a
possible catastrophic loss of precision, and its
source, or to prove that the precision of all
computations remains in an acceptable range.

Indeed, the origin of the main losses of precision is
most of the time very localized. Fluctuat relies on
semantics that decompose the error between the
results of the same computation achieved
respectively with floating-point and real numbers, in
a sum of error terms corresponding to the
elementary operations of this computation, and a
higher order term, most of the time negligible, that
agglomerates higher order errors. We give in this
section a short overview of how floating-point
operations are interpreted with the first semantics we
implemented, based on this idea.

Let F be either the set of simple or double precision

floating-point numbers. Let FR
o
: be the

function that returns the rounded value of a real
number, with respect to the rounding mode o.

Then we define the function FR
o
: that returns

the round-off error by

)()(, rrrRr
oo

= .

Assume that the control points of a program are

annotated by unique labels Ll , and that

denotes the union of L and a special word hi used

to denote all terms of order higher or equal to 2. We

ERTS 2006 – 25-27 January 2006 – Toulouse Page 2/11

represent a variable x at some point in the program,
by a sum

+=
l

l

x

l

xfx .

In this equation,
xf is the floating-point number

approximating the value of x. A term
l

x

l
 denotes

the contribution to the global error of the first-order

error introduced by the operation labelled l, R
x

l

being the value of this error term and
l
 a formal

variable labelling operation l.

The result of an arithmetic operation il• contains the

propagation of existing errors on the operands, plus

a new round-off error term
il

yx

o ff)(• . For

addition and subtraction, the errors are added or
subtracted component-wise :

i

i

l

yx

o

l

l

y

l

x

l

yx

o

l
ffffyx)()()(+++++=+

The multiplication introduces higher order errors:

.)(

)()(

21

21

,
i

i

l

yx

o

ll

hi

y

l

x

l

l

l

x

l

yy

l

xyx

o

l

ff

ffffyx

++

++=

The analyser is built on this idea, using intervals to
get computable supersets of the coefficients, in an
abstract interpretation framework [7]. The use of
intervals allows on one hand to consider sets of
values for variables, and on the other hand to
include the rounding errors committed by the
analysis. Indeed, static analysis consists in
computing some properties of a program without
executing it, for possibly large or infinite sets of
inputs. Here, we compute a superset of all possible

values
xf and errors

x

l
 for each variable x at any

iteration of the loops, on the nodes of the programs
to analyze. These computations are implemented
using MPFR [5], a library that allows floating-point
computations with arbitrary precision.

The analyser has been finely tuned: it comprises an
alias analyser, specific fix point iteration schemes,
precise widening operators, mechanisms for
automatically subdividing input interval values etc.

Modular integer arithmetic is also considered, as well
as casts between floating-point and integer, and
bitwise operations on integers. Potential error terms
are propagated between floating-point and integers.

A language extension is understood by the analyser,
that allows the user to specify ranges of possible
values and errors of inputs (and soon, the ranges of

the gradient of values over time), instead of giving
them fixed values.

Finally, the analysis relying on this domain does not
use correlation between variables, and this may lead
to large over-approximations. We thus have recently
proposed weakly relational domains based on the
same idea of keeping track of the origin of errors, but
that use linear correlations between variables [20].
The results on the example presented in the next
section were obtained with this relational analysis for
the computation of values. The relational analysis for
the computation of errors is being currently
implemented.

2.2 Examples

Consider for example the following piece of code
that computes the inverse of an input by a Newton
iterative method.

double xi, xsi, A, temp;
signed int *PtrA, *Ptrxi, cond, exp, i;
double epsilon = e-10 ;
A = __BUILTIN_DAED_DBETWEEN(20.0,30.0);
PtrA = (signed int *) (&A);
Ptrxi = (signed int *) (&xi);
exp = (signed int) ((PtrA[0] &
0x7FF00000) >> 20) - 1023;
xi = 1; Ptrxi[0] = ((1023-exp) << 20);
cond = 1; i = 0;
while (cond) {
 xsi = 2*xi-A*xi*xi;
 temp = xsi-xi;
 cond = ((temp > epsilon) || (temp < -
epsilon));
 xi = xsi;
 i++;
}

The special assertion

A = __BUILTIN_DAED_DBETWEEN(20.0,30.0)

tells the analyzer that double precision input A can
take its value between 20.0 and 30.0. Then the
operation

PtrA = (signed int *) (&A)

casts the double precision number A into an array of
two integers. Then, the exponent of the input is got
from the first integer of the array, by bitwise
operations. Thus an initial estimate of the inverse,
necessary for a good convergence of the Newton
algorithm, is got from the exponent. Then a non-
linear iteration is computed until the difference
between two successive iterates is bounded by
epsilon.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 3/11

In the framework of embedded systems, it is very
important to qualify the behaviour of such an
algorithm for all possible inputs. The first crucial
point is to bound the possible number of iterations
for any input in a range (in order to satisfy real-time
constraints). And the second point that may be of
importance is to see if the termination criterion is
sensible, in the sense that if it is too low, the
precision required may be obtained on the floating-
point result, but not for the real result.

For example here, for all possible inputs between
20.0 and 30.0, our analyser finds that the algorithm
always terminates in a number of iterations between
5 and 9, and states that the floating-point value of
the output is in the interval [3.333333e-2,5.000000e-
2] with a maximum error between the real and the
floating-point computation in [-4.21443e-
13,4.21443e-13]. We can note that the analyzer
does not overestimate here the number of iterations,
as executions show that respectively 5 iterations with
an input equal to 20.0, and 9 iterations with an input
equal to 30.0, are needed. Also, for the values, their
bound indeed correspond to a close approximation
of the inverse of the inputs. As for the error, it is for
the moment slightly over-estimated, but we are
currently working on a relational domain that will
improve the results.

It should be noted that this error is not the absolute
error between the result and the real value of the
inverse. Fluctuat bounds the error due to the use of
floating-point numbers, and cannot consider the
error due to the algorithm itself, which for example
here gives only an approximation of the inverse of
the input.

The language of assertions understood by Fluctuat
also allows to perturb the input with an initial error.
For example if the input now has an error between –
e-5 and e-5, then we get that the output has its error
in [-9.95e-4, 9.94e-4] so the initial error is
propagated without particular amplification, as the
algorithm is stable (even if again the error is over-
estimated).

In this short example where errors come from a few
lines, we only deal with value and global error, but
for larger scale errors, the error graphs showing the
origin of the main errors in the source code is useful
in order to look more precisely at these few
problematic lines.

Let us now examine the same example but using
simple precision floating-point numbers instead of
double precision. The analyser does not manage to
prove convergence of the algorithm in a finite

number of iterations, the number of iterations
obtained is possibly infinite. However, this may either
be due to the fact that the algorithm indeed cannot
converge, or to the fact that the precision of the
analysis is not sufficient. In order to have a more
refined insight on that point, a possibility is to use a
special mode of the analyzer we call symbolic
execution. This mode allows to see the behaviour
(evolution of value and errors), still with our abstract
semantics, but for one particular value of the input
(instead of a set of inputs like intervals), potentially
perturbed by an error interval. The symbolic
execution is also often less costly than static
analysis. We have thus tried symbolic execution for
1000 input values in the range [20.0,30.0], and for
the first 517 values tried, indeed the number of
iteration remains bounded in [5,7]. However, for the
518

th
 value, A = 25.18, the algorithm does not

converge, and the difference between two
successive iterates alternates between -3.725290e-
09 and 3.725290e-09. This behaviour was
confirmed by actual execution on machine
(decomposing every arithmetic operation in order to
avoid the use of registers for intermediate
computations).

Moreover, even in cases when the algorithm seems
to converge properly, the accuracy of the result may
be questionable : for example, for input A =
25.46999931335449219, the algorithm converges in
6 iterations, and the difference between two floating-
point iterates is zero. But the analyzer also gives the
information that there is an rounding error on this
difference equal to 2.0199e-09, which is 20 times
greater than the stopping criterion epsilon. One can
thus wonder at the meaning of the criterion in this
case.

Finally, if we relax the stopping criterion for example
to epsilon=1e-7, then Fluctuat is able to find that the
algorithm will always converge with between 4 and
12 iterations.

3. The complexity of control systems

Fluctuat mostly considers as for now only one part of
the complexity of the problem. Typically, the inputs
to the programs we want to check come, at some
point, from an external input. As for now, we only
deal with the interface between the physical and the
software worlds at the level of the discretization of
physical quantities (say, input from analogical
sensors, measuring physical quantities such as
speed, acceleration, position in space, temperature,
etc.), which are made of real numbers in general,
into integers (through quantization) or fixed-point or
floating-point numbers. This is just one part of the

ERTS 2006 – 25-27 January 2006 – Toulouse Page 4/11

problem: one also has to consider the discretization
in time, or sampling of the data (as considered in
“hybrid systems” theory [8] but in general to a lesser
extent than what we are planning to do). As for now,
this is done in a rather simple way, partly because
we mainly deal with synchronous systems, and
partly because most of the systems we have been
studying are somehow quite robust to the types of
signal they can handle.
For instance, in the previous example, we specified
the range of the values and errors of inputs, and this
was enough to get a good estimate of the numerical
quality of the code. In the very near future, we will
also have assertions to prescribe the range of the
gradient of the inputs over time, which is a first step
towards a better formalisation of the physical
environment.

This is quite new to static analysis, since the need
has not been felt so much up to now. Typically, as
reported in Astrée’s experiments (static analyser for
run-time errors developed by ENS and X [6]), simple
range assertions on cyclic inputs, not even giving
some constraints on their time evolution, can be
sufficient for proving absence of (software) bugs.

In the case of precision analysis, this is not true for
even simple pieces of code, typical of components in
control systems. Integrators are such components.
They generally take as input a value, add it up to a
current value, and use thresholds to limit the value
they compute. Integrators are called in general with
new inputs over time, cyclically. Indeed, it is very
simple to prove (automatically, in a static analyser,
for instance using the interval abstraction) that the
variable containing the result will not overflow, if the
threshold mechanism is well designed. Now, when it
comes to the potential drift between the floating-point
and the real values, things are much more difficult:
imagine that the floating-point value representing the

input signal always has a negative bias with respect
to its actual physical value. This bias might add up
substantially and lead to a very important
imprecision error (of the order up to the value of the
threshold itself). The difficulty is in general that the
“real signal” has to be known quite precisely in order
to find out that the rounding (quantization) and
sampling introduce, for instance, a zero average
bias. We give and explain below examples of such
phenomena, and ideas about lines of research
concerning static analysis in such contexts:

#define SUP 20

#define INF -20

#define h 1/8.0

#define N 100

static float intgrx=0.0;

void intgr(float xi) {

 intgrx += xi*h;

 if (intgrx > SUP)

 intgrx = SUP;

 if (intgrx < INF)

 intgrx = INF;

}

float f(int i) {

 …

}

void main() {

 int i;

 for (i=0;i<N;i++)

 intgr(f(i));

}

In the code above, intgr is a function that

integrates (using the rectangle method) a given

function f depending on a sample time i*h (h
being the sampling step). Integration is carried out
up to some threshold defined by the interval

[INF,SUP]. Suppose f(i)=cos(2 ih). This can

be the result of the sampling at times ih of an
external physical environment agreeing with the
following ordinary differential equation (ODE) – for
instance coming from the modelling of some
electronic oscillator circuit with negligible impedance,
or after the transient period:

04
2

2

2

=+ u
dt

ud

With initial conditions u(0)=1 and 0)0(=
dt

du
. Then

for h any power of 2, it is easy to see that:

I. intgrx is finite on any trace of execution (and

for every N); indeed, it is of the order of

)2sin(
2
1

x when h is small enough, as seen

in the figure below, for
8

1=h :

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/11

II. the imprecision error due to the floating-point
truncation error, in the round to nearest mode
is also bounded.

For point I, this is only true if the input signal is

sampled at a sufficient rate. For instance, if h=1, the
result would diverge to infinity, but any sampling with

2

1
h would do (this is related to Shannon’s

theorem).

In order to illustrate point II, for
8

1=h , the sampling

sequence is of period 8:

1,
2

2
, 0,

2

2
, -1,

2

2
, 0 ,

2

2
;

the imprecision error coming only from the rounding

of
2

2
 (the corresponding floating-point number is

slightly less than the real number, by about 1.21e-8).

The rounding error for
2

2
1+ is of about –5.938e-

9. Also, it is a property of the IEEE 754 standard [16]

that, in particular, for 1
2

1
x , (1+x)-x=1 in the

rounding to the nearest mode. Hence:

1
2

2

2

2
1 =+

 This means that the imprecision error on intgrx is

the following sequence of period 8:

0, -5.938e-9; -5.938e-9, 0, 0, -1.51e-9, -1.51e-9, 0,

which is bounded indeed, as can be seen in the
figure below:

Of course any unfortunate error in the sampling time
(or more general irregular sampling times, such as
the ones considered in works in applied
mathematics, such as [19]), or due to the sensor,
might entail an important drift between the computed
integral and the real integral. For instance, suppose
that at every period (of 8 samples), sample number 4

(which should be taken at time (8k+3)h is in fact

taken at time (8k+3)h+ where is of the order of

1.71e-8. For this sampling time t, f(t) is equal to the

floating-point number, closest to the real number

2

2
, hence the imprecision error is zero for the

computation of f at this precise time. But this
produces a positive drift between the real number
and the floating-point computation of the integral,
which will take, after a finite number of iterations, the

real number to the SUP threshold whereas the
floating-point number will be periodic always less
than 0.214 approximatively. See the figure below to
see the slow drift of the imprecision error:

The fact is that any simple static analyser, based on
standard intervals for instance, will be able to prove
I, but II will be in general quite hard. Fluctuat is able

to find that if the sampling is exact for a given h, and
for the precise signal we have been looking at (with

ERTS 2006 – 25-27 January 2006 – Toulouse Page 6/11

an extremely precise estimate of the solution of the
ODE, using for instance the algorithm [13]) then

“unfolding” the loop
h

1 times, periodically, will allow

for giving very accurate bounds on the imprecision
error. For general input sampling times, or more
general types of signals, it will have no other solution
than bound the imprecision error by the whole

interval size SUP-INF. It will be right (not that
pessimistic since this might really happen) but one
might hope for better results, since in general an
integrator is just a small part, buried deep in a
control command code. This calls for the following:

• a careful study of the imprecision error in the
sampling of some classical (but general)
classes of signals, or of solutions to some
classical ODEs

• probabilistic estimates of the imprecision
error in more general cases, in order to be
less pessimistic, and give an indication of
the “average case”, since the worst case
might be very often erroneous.

For instance, for our last statement: if we model the
perturbation of the sampling time as independent
gaussian random variables with zero average and
small variance, this will result in a zero average and
small variance difference between the real integral of
the perturbed discrete signal and the real integral of
the periodic discrete signal. We conjecture that
under some mild assumptions, this will also be the
case between the real integral and the floating-point
integral of the perturbed discrete signal.

As for the former point, one can readily see that
there are functions that always behave badly with
respect to the estimate of their integrals. For

instance, if f is a decreasing function converging

towards zero, but whose integral (from 0 to x, any
positive real) is not bounded, like

1

1
)(

+
=

x
xf

 the drift between the real number and the floating-
point number computation of its integral is always
very important, as we will show shortly. Below are
the pictures of the computed integral in the floating-
point numbers, and, respectively, of the imprecision
error made for 10000000 iterations:

Then for the imprecision errors (the last part of the

curve is actually increasing for ever, until the SUP
threshold):

Consider any sampling of such a function f, such

that for all N, there is always an infinite number of
samples after N (plus infinity is an accumulation

point of the sequence of samples). Then, because f
is converging towards 0, and as it is always positive
(it is decreasing towards zero), there is an X such

that for all x greater than X, f(x) is less than half of
the smallest positive floating-point number (of a
given type). Hence for all subsequent samples, the
signal will be rounded to zero, hence the integral as
computed by our code, in the floating-point numbers,
will converge in a finite time, to a finite number.

Notice now that the integral of f from X to any
further t will diverge to plus infinity when t goes to
infinity. For a decreasing and positive function, the
discrete integral as given by the algorithm
programmed in our code, always gives an upper-
approximation (in the real numbers), of the real
integral, hence will also diverge to plus infinity. This
entails that the imprecision error can grow arbitrarily
high (up to the thresholds given by the code).

ERTS 2006 – 25-27 January 2006 – Toulouse Page 7/11

4. Future challenges

This gives but a simplified view of the problems one
might encounter when trying to automatically verify
typical PID control systems [12], very much used in
industrial codes. More generally, in most control
systems, feedback loops are created, linking the
output of the code to the input, at some further step,
in a more or less direct way. For instance, the output
of a control system goes through actuators, that
interact with the physical environment, and in turn,
will modify the values that the sensors will input to
the control system, later on. We have already seen
in the last section that the verification of such
systems can only be precise enough if the
“semantics” of the physical environment is modelled
accurately, for instance using models involving some
ODE or PDE. But this involved only the “separate”
resolution of ODEs before trying to solve the
(discrete) abstract semantical equations given by the
code under analysis. For programs which interact
also through actuators on the environment (that is,
every real life control system), this is not enough: we
need to be able to solve the discrete and continuous
equations jointly. This poses new challenges to the
field of automatic validation of systems, integrated in
their environment, since methods for solving these
discrete and continuous systems are in general fairly
different! It is already interesting to note that some
control theorists have also begun to make the way in
the reverse direction, integrating software in their
models of the physical world [9], [10]. It is probable
that the two communities will meet on a joint
solution.

Take the following example. Water is poured into a
tank of water at a given rate Fi, and a controller can
act on the output flow Fo, possibly faster than the
output flow (as shown in the figure below):

Hence the level u of the tank is governed by the
ODE:

oi
FF

dt

du
=

The controller will try to adjust the outgoing flow
through an action on the valve, so that it can make

the level reach and stabilize at the objective level yc.

It will take as input, at periodic time ticks, the current

level of the water (not knowing the input flow Fi of
course) so that to determine whether it has to open
more or close more the valve. Typical controllers

(see [12]) take as new value of the flow Fo at the

time tick i, controlled by the value
i

u , a coefficient K

multiplied by
i

e , the difference between the current

level y and the objective level yc. These very
simple controllers are called proportional controllers
(P controllers). They can be controlled also with an
extra term, using a correction term based on the time

derivative of
i

e (to have a PD controller). Finally, one

can also add up a factor of the integral over time of

i
e (to have a general PID controller). We refer the

reader to [12] for instance, for more about the
respective interests of these different controllers.
Note that PID controllers are heavily used in industry
in the large, this is not a purely academic example.

An implementation of a PID controller can be easily

encoded as follows, using the sum of
i

e over time to

compute the integral (see our integrator of Section 3)

and
1ii

ee as a simple discretization of the time

derivative of
i

e . Our PID controller is implemented in

the main function below; it implements the following
iterative scheme:

()++=
=

i

j

ii
D

j

I

ii ee
T

e
T

eKu
0

1

The different variables involved in the code below
are:

• yn is the current value (at sample time n)
of the level of the tank,

• taui is the integration time of the PID
controller,

• taud is the derivation time of the PID

controller,
• K is the gain of the controller,
• yc is the level value that the controller

should converge to,
• ui (as computed by the main function), is

the value of the flow of water that the

controller imposes on the valve, at time i.

typedef double NUM;
static NUM yn = 0;
NUM ui = 0;

NUM y(int i) {
 yn += ui;

ERTS 2006 – 25-27 January 2006 – Toulouse Page 8/11

 return yn;
}

void main() {
 NUM yi, yc;
 NUM K;
 NUM T;
 NUM taui;
 NUM taud;
 NUM ei, sumej, epi;
 int i;
 T = 1;
 taui = 1;
 taud = 1;
 K = .5;
 yc = .5;
 yi = y(0);
 epi = yc-yi;
 sumej = epi;
 for (i=1;i<100;i++) {
 yi = y(i);
 ei = yc-yi;
 sumej = sumej+ei;
 ui = K*(ei+sumej*T/taui+taud/T*(ei-
epi));
 epi = ei;
 }
}

This example is complex for a static analyser, as
already was the integrator in Section 3, which it
contains. So we only study here the numerical
behaviour for one execution only, using Fluctuat and
the same semantics as explained in Section 1 (this is
a symbolic execution in the corresponding abstract
domain). The graph below shows the value of the

command ui over time, as automatically given by

Fluctuat :

while the figure below pictures the evolution over

time of the measure ei of the difference between

the current level of water and the objective level:

Notice that numerical experiments show that this
scheme is well behaved in general, as shown in our
particular run of the algorithm, in the figure below
(imprecision error of the difference between the level

yi objective yc over time):

Notice that the errors at the end are going to zero,
and are transient, due to the very low value of

ei=yi-yc at these iterations (around the ulp(1)
from the 70

th
 iteration on). The first iterates are

actually computed exactly (the floating-point number
is equal to the real number) because the first few

iterates are of the form
n

2 (the first ones are 0.5,
0.5, -0.25, -0.125 etc.) and thus the integral,
derivative and gain computation (since the gain is
also of this form: 0.5) have a small finite bit
expansion in the floating-point number format. It is
only after about 70 iterations, when close enough to
the ulp, that some bits are lost in the rounding to
nearest mode, but this still converges towards 0.

Unfortunately, this is but an approximation of the
system we should prove correct (in particular, as for
the imprecision errors in the control mechanism). In

the real system, function y is a sampling at some
more or less precise times of the current level of the

ERTS 2006 – 25-27 January 2006 – Toulouse Page 9/11

tank, modelled (in the real numbers) as the solution
of the differential equation above. We can make two
remarks here:

• Fo is equal to the current flow command

(given by ui) at the last clock tick – which is
only a floating-point number approximating
the value of the real command that should
have taken place. Also the actuator (the
valve) may not be very precise, and a new
error is created there. This affects at the

next sampling time the value of y. Because
of the feedback loop, the imprecision error of

the computation of ui will affect later

inputs, possibly drifting dramatically (there is
an integrator, as in last section, in the
code!). But now, the characterization of the
input signals, even probabilistically, is very
hard to make, since the input depends on
the computation.

• Here, the ODE describing the external
physical world is very simple, it is easy to
simulate its solution in the same formalism
as for the controller code (this is what we did
here to analyse the code through our current
version of Fluctuat). This is unfortunately not
the case in general, and one has to design
mixed ODE-discrete systems solvers, in
order to be able to answer the verification
problem (see for instance [13] or [11]).

Notice that once again, it is the integrator part of the
code which creates the main problem for Fluctuat: if
we just use a P or PD controller, then we can prove
automatically that there is no big imprecision error, in
the particular case when the outside physical world
is simulated by a C function as the one we had for
the PID controller.

5. Conclusion

We have seen that Fluctuat is able to assert the
precision of many floating-point computations in
industrial, representative, control systems. Our
current and future work is driven by two related
objectives: to improve the precision of the analyses
and to deal with larger classes of problems. These
directions often are convergent since, for example, a
more accurate domain enables the analyser to treat
new classes of algorithms while improving the
precision of the results in general. Obviously, as for
other static analysers, a trade-off between precision
and performances has to be carefully chosen.

A main difficulty comes from the fact that programs
contain information on the evolution of floating-point
values but not on the error terms. For example, the
threshold performed by the integrator of Section 3
does not allow one to limit the error on the

accumulator. So, in order to enable Fluctuat to infer
such properties, we aim at designing new domains.
For example, we are currently introducing linear
correlations between variables, to limit the usual
drawbacks of interval arithmetic (wrapping effect) on
the error terms [20]. We also plan to compute
information on the derivatives of the errors with
respect to the floating-point values, by (safe)
automatic differentiation, to correlate the floating-
point values to the error terms.

New classes of problems have already been
mentioned in this article. The analysis of hybrid
systems, described in Section 4, is quite a
challenging direction. Besides the definition of the
analysis itself, it requires the design of safe
numerical algorithms to find sure solutions to
equation systems (typically ODE or PDE). Basically,
for the safety and precision of the analysis, these
algorithms have to output fine over-approximations
and under-approximations of the real solution. For
instance, in the case of the integrator of Section 3, a
current implementation of the abstract domain of O.
Bouissou [13] can already prove the boundedness of

the variable intgrx for the cosine function,

assuming the sampling is done at exact periodic
times.

Next, our interest for introducing random variables to
model some error terms was illustrated in Section 3
to cope with problems where, in the worst case,
some error terms may indeed grow infinitely, for
example if round-off errors do not cancel each other,
even if this scenario is very unrealistic. In these
cases, we plan to use new analyses based on
probabilistic abstract domains [17]. Another mid-term
objective is to analyse mathematically more difficult
problems. More precisely, we aim at designing new
analysis frameworks to cope with numerical
intensive codes, used for simulations (by opposition
to control systems). However, the properties
ensuring the stability of this kind of algorithms
usually are much more complicated than in the case
of control systems. Special purpose domains,
possibly specific to some classes of numerical
methods will probably be needed for these
applications.

Another important research direction concerns the
validation of the conformance of an implementation
with respect to a model and this problem can be
considered at different levels of abstraction. In
practice, control systems usually are designed using
high-level, often block diagram-based, languages
like SCADE of SIMULINK and, then, are translated
into C or assembler (by hand or automatically). If C
code is used, it ultimately has to be compiled into
assembler.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 10/11

In any case, one has to assert that an
implementation conforms to a model (C w.r.t.
SCADE or SIMULINK, assembler w.r.t. C, etc.).
These translations are error prone for numerical
precision since floating-point computations are very
sensitive, for example, to the evaluation order of the
operations and to the different numbers of bits
available in registers and memory locations. Hence,
implementation details may significantly change the
quality of a code, even if it mathematically computes
what the specification requires in the reals. This
makes us investigate different topics: first, the
analysis of control systems described by block
diagrams is a necessary intermediate objective.
Second, we plan to use techniques to compare
invariants at different levels of abstractions. This
approach was successfully applied to run-time errors
[18] but numerical precision introduces new
problems, since we cannot expect to obtain exactly
the same error terms in the model and the
implementation. Finally, we investigate ways to
make our analysers (C and assembler) collaborate,
at least to analyse C codes with inlined assembler
routines and, at longer term, to help solving the
conformance problem. For example, under some
assumptions, any arithmetic C expression could be
translated in assembler before applying a mixed
analysis.

Finally, we aim at defining more robust safety
properties concerning the numerical precision of
programs. Current criteria consist of proving that no
error term overpasses a given limit, expressed as an
absolute or relative quantity. But such criteria remain
weak: for example an error of one percent may be,
most of the time negligible, while being critical in
some situations. In the context of hybrid systems, we
plan to define more robust criteria based on the
actions performed by a program on the
environment. For example, an alarm has to be
activated in the same cases, independently of which
arithmetic is used, and independently of the
precision of the computations.

Last but not least, in the search for realistic
modelling and verification of systems involving
software, some particular events have to be taken
into account: for instance, faults of sensors, or
actuators [15], since most control systems are
inherently designed to be robust to some forms of
accidents, and a complete proof should integrate the
proof of the relevant software (and hardware)
mechanisms. We advocate that other interactions
with software than the ones with the physical world
should be considered, namely the interaction with
hardware (through OS, or simpler apparatus, like
simple drivers). An ultimate goal, would be to include

in the proof of a control system the human factor
(which gives some inputs to the software in
particular, for instance a pilot of a plane, or a driver
of a car), but this has unfortunately far less clear
scientific grounds, although models could and should
include some basic factors like minimum response
time of a human being, the possibility of an illegal
command issued by the human being (such as turn
off the key while driving), which can be formalized.

6. Acknowledgement

The authors acknowledge the contribution of their
colleagues to this work, and in particular A.
Chapoutot (see [14]) and O. Bouissou.

7. References

[1] Static Analysis-Based Validation of Floating-Point
Computations, S. Putot, E. Goubault and M. Martel,
follow-up of the seminary on Numerical Software
with Result Verification, at Dagstuhl, Germany,
LNCS 2991, 2004.
[2] Asserting the Precision of Floating-Point
Computations: a Simple Abstract Interpreter, E.
Goubault, M. Martel and S. Putot, European
Symposium on Programming, LNCS 2305, 2002.
[3] Validation of Assembler Programs for DSPs: A
Static Analyzer, M. Martel, Program Analysis for
Software Tools and Engineering, ACM Press, 2004.
[4] Propagation of Roundoff Errors in Finite Precision
Computations: a Semantics Approach , M. Martel,
European Symposium On Programming, LNCS
2305, 2002.
[5] Multiprecision library, http://www.mpfr org
[6] Design and implementation of a special-purpose
static program analyser for safety critical real-time
embedded software, B. Blanchet, P. Cousot, R.
Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, X. Rival, LNCS 2566, 2003.
[7] Abstract Interpretation: A unified lattice model for
static analysis of programs by construction of
approximations of fixed points, P. Cousot and R.
Cousot, POPL’77.
[8], The algorithmic analysis of hybrid systems, R.
Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger,
P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis and S.
Yovine, TCS, Vol. 138, P. 3-34, 1995.
 [9] Safety verification of hybrid systems using barrier
certificates, SIAM journal on Systems and Control
Theory, S. Prajna and A. Jadbabaie, 1994.
[10] A framework for worst-case and stochastic
safety verification using barrier certificates, S.
Prajna, A. Jadbabaie, G. Pappas, IEEE transactions
on automatic control, 2005.
[11] Guaranteed error bounds for ordinary differential
equation, G. F. Corliss, Lectures Notes SERC, 1994.
[12] Elements d’Automatique, M. Depeyrot and P.
Faurre, Dunod, 1974.

ERTS 2006 – 25-27 January 2006 – Toulouse Page 11/11

[13] Analyse statique par interpretation abstraite de
systèmes hybrids discrets-continus, O. Bouissou,
Technical Report CEA-LIST-DTSI05-301, 2005.

[14] Analyse statique pour la precision numérique, A.
Chapoutot,, Master’s Thesis, Université Paris 6,
2005.

[15] Distributed Algorithms, N. Lynch, Morgan-
Kaufmann Editors, 1996.

[16] What every computer scientist should know
about floating-point arithmetic, D. Goldberg, ACM
Computing Surveys, Vol. 23, No. 1, ACM, 1991.

[17] An abstract Monte-Carlo Method for the
Analysis of Probabilistic Programs, D. Monniaux,
Principles of Programming Languages, ACM, 2001.

[18] Invariant Translation-Based Certification of
Assembly Codes, X. Rival, International Journal on
Software and Tools for Technology Transfer, 2004.
[19] Recursive Non Parametric Spectral Estimation
From Irregularly Sampled Observations, A. Rivoira,
G. Fleury, IEEE DSP, 2002.
[20] Weakly relational domains for floating-point
computation analysis, E. Goubault, S. Putot,
NSAD’2005.

