
Strongly Typed Numerical Computations†

Matthieu Martel

Laboratoire de Mathématiques et Physique (LAMPS)
Université de Perpignan Via Domitia, France

matthieu.martel@univ-perp.fr

Abstract. It is well-known that numerical computations may some-
times lead to wrong results because of roundoff errors. We propose an
ML-like type system (strong, implicit, polymorphic) for numerical com-
putations in finite precision, in which the type of an expression carries
information on its accuracy. We use dependent types and a type infer-
ence which, from the user point of view, acts like ML type inference.
Basically, our type system accepts expressions for which it may ensure
a certain accuracy on the result of the evaluation and it rejects expres-
sions for which a minimal accuracy on the result of the evaluation cannot
be inferred. The soundness of the type system is ensured by a subject
reduction theorem and we show that our type system is able to type
implementations of usual simple numerical algorithms.

1 Introduction

It is well-known that numerical computations may sometimes lead to wrong
results because of the accumulation of roundoff errors [8]. Recently, much work
has been done to detect these accuracy errors in finite precision computations [1],
by static [6, 9, 18] or dynamic [7] analysis, to find the least data formats needed
to ensure a certain accuracy (precision tuning) [11, 12, 17] and to optimize the
accuracy by program transformation [5, 14]. All these techniques are used late
in the software development cycle, once the programs are entirely written.

In this article, we aim at exploring a different direction. We aim at detect-
ing and correcting numerical accuracy errors at software development time, i.e.
during the programming phase. From a software engineering point of view, the
advantages of our approach are many since it is well-known that late bug de-
tection is time and money consuming. We also aim at using intensively used
techniques recognized for their ability to discard run-time errors. This choice is
motivated by efficiency reasons as well as for end-user adoption reasons.

We propose an ML-like type system (strong, implicit, polymorphic [15]) for
numerical computations in which the type of an arithmetic expression carries

†This work is supported by the Office for Naval Research
Global under Grant NICOP N62909-18-1-2068 (Tycoon project).
https://www.onr.navy.mil/en/Science-Technology/ONR-Global

information on its accuracy. We use dependent types [16] and a type inference
which, from the user point of view, acts like ML [13] type inference [15] even if
it slightly differs in its implementation. While type systems have been widely
used to prevent a large variety of software bugs, to our knowledge, no type
system has been targeted to address numerical accuracy issues in finite precision
computations. Basically, our type system accepts expressions for which it may
ensure a certain accuracy on the result of the evaluation and it rejects expressions
for which a minimal accuracy on the result of the evaluation cannot be inferred.

Let us insist on the fact that we use a dependent type system. Consequently,
the type corresponding to a function of some argument x depends on the type
of x itself. The soundness of our type system relies on a subject reduction the-
orem introduced in Section 4. Based on an instrumented operational semantics
computing both the finite precision and exact results of a numerical computa-
tion, this theorem shows that the error on the result of the evaluation of some
expression e is less than the error predicted by the type of e. Obviously, as
any non-trivial type system, our type system is not complete and rejects cer-
tain programs that would not produce unbounded numerical errors. Our type
system has been implemented in a prototype language Numl and we show that,
in practice, our type system is expressive enough to type implementations of
usual simple numerical algorithms [2] such as the ones of Section 5. Let us also
mention that our type system represents a new application of dependent type
theory motivated by applicative needs. Indeed, dependent types arise naturally
in our context since accuracy depends on values.

This article is organized as follows. Section 2 introduces informally our type
system and shows how it is used in our implementation of a ML-like programming
language, Numl. The formal definition of the types and of the inference rules are
given in Section 3. A soundness theorem is given in Section 4. Section 5 presents
experimental results and Section 6 concludes.

2 Programming with Types for Numerical Accuracy

In this section, we present informally how our type system works throughout a
programming sequence in our language, Numl. First of all, we use real numbers
r{s, u, p} where r is the value itself, and {s, u, p} the format of r. The format of
a real number is made of a sign s ∈ Sign and integers u, p ∈ Int such that u is
the unit in the first place of r, written ufp(r) and p the precision (i.e. the number
of digits of the number). We have Sign = {0,⊕,	,>} and sign(r) = 0 if r = 0,
sign(r) = ⊕ if r > 0 and sign(r) = 	 if r < 0. The set Sign is equipped with
the partial order relation ≺⊆ Sign× Sign defined by 0 ≺ ⊕, 0 ≺ 	, ⊕ ≺ > and
	 ≺ >. The ufp of a number x is

ufp(x) = min
{
i ∈ N : 2i+1 > x

}
= blog2(x)c . (1)

The term p defines the precision of r. Let ε(r) be the absolute error on r,
we assume that ε(r) < 2u−p+1 . The errors on the numerical constants arising
in programs are specified by the user or determined by default by the system.

Format Name p e bits emin emax

Binary16 Half precision 11 5 −14 +15
Binary32 Single precision 24 8 −126 +127
Binary64 Double precision 53 11 −1122 +1223
Binary128 Quadruple precision 113 15 −16382 +16383

Fig. 1. Basic binary IEEE754 formats.

The errors on the computed values can be inferred by propagation of the initial
errors. Similarly to Equation (1), we also define the unit in the last place (ulp)
used later in this article. The ulp of a number of precision p is defined by

ulp(x) = ufp(x)− p+ 1 . (2)

For example, the type of 1.234 is real{+, 0, 53} since ufp(1.234) = 0 and
since we assume that, by default, the real numbers have the same precision
as in the IEEE754 double precision floating-point format [1] (see Figure 1).
Other formats may be specified by the programmer, as in the example below.
Let us also mention that our type system is independent of a given computer
arithmetic. The interpreter only needs to implement the formats given by the
type system, using floating-point numbers, fixed-point numbers [10], multiple
precision numbers1, etc in order to ensure that the finite precision operations
are computed exactly. The special case of IEEE754 floating-point arithmetic,
which introduces additional errors due to the roundoff on results of operations
can also be treated by modifying slightly the equations of Section 3.

> 1.234 ;; (* precision of 53 bits by default *)
- : real{+,0,53} = 1.234000000000000

> 1.234{4};; (* precision of 4 bits specified by the user *)
- : real{+,0,4} = 1.2

Notice that, in Numl, the type information is used by the pretty printer to display
only the correct digits of a number and a bound on the roundoff error.

Note that accuracy is not a property of a number but a number that states
how closely a particular floating-point number matches some ideal true value.
For example, using the basis β = 10 for the sake of simplicity, the floating-point
value 3.149 represents π with an accuracy of 3. It itself has a precision of 4. It
represents the real number 3.14903 with an accuracy of 4. As in ML, our type
system admits parameterized types [15].

> let f = fun x -> x + 1.0 ;;
val f : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> verbose true ;;
- : unit = ()

> f ;;
- : real{’a,’b,’c} -> real{(SignPlus ’a ’b 1 0),((max ’b 0) +_ (sigma+ ’a 1)),
((((max ’b 0) +_ (sigma+ ’a 1)) -_ (max (’b -_ ’c) -53))-_ (iota (’b -_ ’c) -53))} = <fun>

1https://gmplib.org/

In the example above, the type of f is a function of an argument whose
parameterized type is real{’a, ’b, ’c}, where ’a, ’b and ’c are three type
variables. The return type of the function f is Real{e0,e1,e2} where e0, e1
and e2 are arithmetic expressions containing the variables ’a, ’b and ’c. By
default these expressions are not displayed by the system (just like higher order
values are not explicitly displayed in ML implementations) but we may enforce
the system to print them. In Numl, we write +, -, * and / the floating-point
operators. The integer operators are written + , - , * and / . The expressions
arising in the type of f are explained in Section 3. As shown below, various
applications of f yield results of various types, depending on the type of the
argument.

> f 1.234 ;;
- : real{+,1,53} = 2.234000000000000

> f 1.234{4} ;;
- : real{+,1,5} = 2.2

If the interpreter detects that the result of some computation has no significant
digit, then an error is raised. For example, it is well-known that in IEEE754
double precision (1016+1)−1016 = 0. Our type system rejects this computation.

> (1.0e15 + 1.0) - 1.0e15 ;;
- : real{+,50,54} = 1.0

> (1.0e16 + 1.0) - 1.0e16 ;;
Error: The computed value has no significant digit. Its ufp is 0 but the ulp of the
certified value is 1

Last but not least, our type system accepts recursive functions. For example, we
have:

> let rec g x = if x < 1.0 then x else g (x * 0.07) ;;
val g : real{+,0,53} -> real{+,0,53} = <fun>

> g 1.0 ;;
- : real{+,0,53} = 0.07000000000000

> g 2.0 ;;
Error: This expression has type real{+,1,53} but an expression was expected of type
real{+,0,53}

In the above session, the type system unifies the return type of the function
with the type of the conditional. The types of the then and else branches also
need to be unified. Then the return type is real{+,0,53} which corresponds to
the type of the value 1.0 used in the then branch. The type system also unifies
the return type with the type of the argument since the function is recursive.
Finally, we obtain that the type of g is real{+,0,53} -> real{+,0,53}. As
a consequence, we cannot call g with an argument whose ufp is greater than
ufp(1.0) = 0. To overcome this limitation, we introduce new comparison opera-
tions for real numbers. While the standard comparison operator < has type ’a ->
’a -> bool, the operator <{s,u,p} has type real{s,u,p} -> real{s,u,p} ->
bool. In other words, the compared value are cast in the format {s, u, p} before
performing the comparison. Now we can write the code:

> let rec g x = if x <{*,10,15} 1.0 then x else g (x * 0.07) ;;
val g : real{*,10,15} -> real{*,10,15} = <fun>

> g 2.0 ;;
- : real{*,10,15} = 0.1

> g 456.7 ;;
- : real{*,10,15} = 0.1

> g 4567.8 ;;
Error: This expression has type real{+,12,53} but an expression was expected of
type real{*,10,15}

Interestingly, unstable functions (for which the initial errors grow with the
number of iterations) are not typable. This is a desirable property of our system.

> let rec h n = if (n=0) then 1.0 else 3.33 * (h (n -_ 1)) ;;
Error: This expression has type real{+,-1,-1} but an expression was expected of
type real{+,-3,-1}

Stable computations should be always accepted by our type system. Obvi-
ously, this is not the case and, as any non-trivial type system, our type system
rejects some correct programs. The challenge is then to accept enough programs
to be useful from an end-user point of view. We end this section by showing an-
other example representative of what our type system accepts. More examples
are given later in this article, in Section 5. The example below deals with the
implementation of the Taylor series 1

1−x =
∑+∞
n≥0 x

n . The implementation gives
rise to a simple recursion, as shown in the programming session below.

> let rec taylor x{*,-1,25} xn i n = if (i > n) then 0.0{*,10,20}
else xn + (taylor x (x * xn) (i +_ 1) n) ;;

val taylor : real{*,-1,25} -> real{*,10,20} -> int -> int -> real{*,10,20} = <fun>

> taylor 0.2 1.0 0 5;;
- : real{*,10,20} = 1.2499 +/- 0.0009765625

Obviously, our type system computes the propagation of the errors due to
finite precision but does not take care of the method error intrinsic to the im-
plemented algorithm (the Taylor series instead of the exact formula 1

1−x in our
case.) All the programming sessions introduced above as well as the additional
examples of Section 5 are fully interactive in our system, Numl, i.e. the type
judgments are obtained instantaneously (about 0.01 second in average following
our measurements) including the most complicated ones.

3 The Type System

In this section, we introduce the formal definition of our type system for numer-
ical accuracy. First, in Section 3.1, we define the syntax of expressions and types
and we introduce a set of inference rules. Then we define in Section 3.2 the types
of the primitives for the operators among real numbers (addition, product, etc.)
These types are crucial in our system since they encode the propagation of the
numerical accuracy information.

3.1 Expressions, Types and Inference Rules

In this section, we introduce the expressions, types and typing rules for our lan-
guage. For the sake of simplicity, the syntax introduced hereafter uses notations

Γ ` i : int
(Int)

Γ ` b : bool
(Bool)

sign(r) ≺ s ufp(r) ≤ u
Γ ` r{s,u,p} : real{s, u, p}

(Real)
Γ (id) = t

Γ ` id : t
(Id)

Γ ` e0 : bool Γ ` e1 : t1 Γ ` e2 : t2 t = t1 t t2
Γ ` if e0 then e1 else e2 : t

(Cond)

Γ, x : t1 ` e : t2

Γ ` λx.e : Πx : t1.t2
(Abs)

Γ, x : t1, f : Π.y : t1.t2 ` e : t2 y not free in t2

Γ ` rec f x.e : Πx : t1.t2
(Rec)

Γ ` e1 : Πx : t0.t1 Γ ` e2 : t2 t2 v t0
Γ ` e1 e2 : t2[x 7→ e2]

(App)

Fig. 2. Typing rules for our language.

à la lambda calculus instead of the ML-like syntax employed in Section 2. In
our system, expressions and types are mutually dependent. They are defined
inductively using the grammar of Equation (3).

Expr 3 e ::= r{s, u, p} ∈ Realu,p | i ∈ Int | b ∈ Bool | id ∈ Id
| if e0 then e1 else e2 | λx.e | e0 e1 | rec f x.e | t

Typ 3 t ::= | int | bool | real{i0, i1, i2} | α | Πx : e0.e1

IExp 3 i ::= | int | op ∈ IdI | α | i0 i1

(3)

In Equation (3), the e terms correspond to expressions. Constants are integers
i ∈ Int, booleans b ∈ Bool and real numbers r{s, u, p} where r is the value itself,
s ∈ Sign is the sign and u, p ∈ Int the ufp (see Equation (1)) and precision of r.
We have Sign = {0,⊕,	,>} and sign(r) = 0 if r = 0, sign(r) = ⊕ if r > 0 and
sign(r) = 	 if r < 0. The set Sign is equipped with the partial order relation
≺⊆ Sign×Sign defined by 0 ≺ ⊕, 0 ≺ 	, ⊕ ≺ > and 	 ≺ >. The term p defines
the precision of r. Let ε(r) be the absolute error on r, we assume that

ε(r) < 2u−p+1 . (4)

The errors on the numerical constants arising in programs are specified by the
user or determined by default by the system. The errors on the computed values
can be inferred by propagation of the initial errors.

In Equation (3), identifiers belong to the set Id and we assume a set of pre-
defined identifiers +, −, ×, ≤, =, . . . related to primitives for the logical and
arithmetic operations. We write +, −, × and ÷ the operations on real numbers
and + , − , × and ÷ the operations among integers. The language also admits
conditionals, functions λx.e, applications e0 e1 and recursive functions rec f x.e
where f is the name of the function, x the parameter and e the body. The
language of expressions also includes type expressions t defined by the second
production of the grammar of Equation (3).

The definition of expressions and type is mutually recursive. Type variables
are denoted α, β, . . . and Πx : e0.e1 is used to introduce dependent types [16].

u2

u10 0

p2

p1

Fig. 3. The sub-typing relation v of Equation (6).

Let us notice that our language does not explicitly contain function types t0 → t1
since they are encoded by means of dependent types. Let ≡ denote the syntactic
equivalence, we have

t0 → t1 ≡ Πx : t0.t1 with x not free in t1 . (5)

For convenience, we also write λx0.x1 . . . xn.e instead of λx0.λx1 . . . λxn.e and
Πx0 : t0.x1 : t1 . . . xn : tn.e instead of Πx0 : t0.Πx1 : t1 . . . Πxn : tn.e.

The types of constants are int, bool and real{i0, i1, i2} where i0, i1 and
i2 are integer expressions denoting the format of the real number. Integer ex-
pressions of IExpr ⊆ Expr are a subset of expressions made of integer numbers,
integer primitives of IdI ⊆ Id (such as + , × , etc.), type variables and applica-
tions. Note that this definition restricts significantly the set of expressions which
may be written inside real types.

The typing rules for our system are given in Figure 2. These rules are mostly
classical. The type judgment Γ ` e : t means that in the type environment Γ ,
the expression e has type t. A type environment Γ : Id→ Typ map identifiers to
types. We write Γ x : t the environment Γ in which the variable x has type t.
The typing rules (Int) and (Bool) are trivial. Rule (Real) states that the type
of a real number r{s,u,p} is real{s, u, p} assuming that the actual sign of r is
less than s and that the ufp of r is less than u. Following Rule (Id), an identifier
id has type t if Γ (id) = t. Rules (Cond), (Abs) and (Rec) are standard rules
for conditionals and abstractions respectively. The rule for application, (App),
requires that the first expression e1 has type Πx : t0.t1 (which is equivalent to
t0 → t1 if x is not free in t1) and that the argument e2 has some type t2 v t0.
The sub-typing relation @ is introduced for real numbers. Intuitively, we want to
allow the argument of some function to have a smaller ulp than what we would
require if we used t0 = t2 in Rule (App), provided that the precision p remains
as good with t2 as with t0. This relaxation allows to type more terms without
invalidating the type judgments. Formally, the relation v is defined by

real{s1, u1, p1} v real{s2, u2, p2} ⇐⇒ s1 v s2 ∧ u2 ≥ u1 ∧ p2 ≤ u2−u1 +p1 . (6)

In other words, the sub-typing relation of Equation (6) states that it is always
correct to add zeros before the first significant digit of a number, as illustrated
in Figure 3.

3.2 Types of Primitives

In this section, we introduces the types of the primitives of our language. As
mentionned earlier, the arithmetic and logic operators are viewed as functional
constants of the language. The type of a primitive for an arithmetic operation
among integers ∗ ∈ {+ ,− ,× ,÷ } is

t∗ = Πx : int.y : int.int . (7)

The type of comparison operators on∈ {=, 6=, <,>,≤,≥} are polymorphic with
the restriction that they reject the type real{s, u, p} which necessitates special
comparison operators:

ton = Πx : α.y : α.bool α 6= real{s, u, p} . (8)

For real numbers, we use comparisons at a given accuracy defined by the oper-
ators on{u,p}∈ {<{u,p}, >{u,p}}. We have

ton{u,p} = Πs : int, u : int, p : int.real{s, u, p + 1} → real{s, u, p + 1} → bool .

Notice that the operands of a comparison on{u,p} must have p+1 bits of accuracy.
This is to avoid unstable tests, as detailed in the proof of Lemma 3 in Section
4. An unstable test is a comparison between two approximate values such that
the result of the comparison is altered by the approximation error. For instance,
if we reuse an example of Section 2, in IEEE754 double precision, the condition
1016 + 1 = 1016 evaluates to true. We need to avoid such situations in our
language in order to preserve our subject reduction theorem (we need the control-
flow be the same in the finite precision and exact semantics). Let us also note
that our language does not provide an equality relation ={u,p} for real values.
Again this is to avoid unstable tests. Given values x and y of type real{s, u, p},
the programmer is invited to use |x − y| < 2u−p+1 instead of x = y in order to
get rid of the perturbations of the finite precision arithmetic.

The types of primitives for real arithmetic operators are fundamental in
our system since they encode the propagation of the numerical accuracy in-
formation. They are defined in figures 4 and 5. The type t∗ of some operation
∗ ∈ {+,−,×,÷} is a pi-type with takes six arguments s1, u1, p1, s2, u2 and p2 of
type int corresponding to the sign, ufp and precision of the two operands of ∗ and
which produces a type real{s1, u1, p1} → real{s2, u2, p2} → real{S∗(s1, s2),
U∗(s1, u1, s2, u2),P∗(u1, p1, u2, p2)} where S∗, U∗ and P∗ are functions which com-
pute the sign, ufp and precision of the result of the operation ∗ in function of
s1, u1, p1, s2, u2 and p2. These functions extend the functions used in [12].

The functions S∗ determine the sign of the result of an operation in function
of the signs of the operands and, for additions and subtractions, in function of
the ufp of the operands. The functions U∗ compute the ufp of the result. Notice
that U+ and U− use the functions σ+ and σ−, respectively. These functions are
defined in the bottom right corner of Figure 5 to increment the ufp of the result
of some addition or subtraction in the relevant cases only. For example if a and b
are two positive real numbers then ufp(a+ b) is possibly max

(
ufp(a), ufp(b)

)
+ 1

t∗ = Πs1 : int, u1 : int, p1 : int, s2 : int, u2 : int, p2 : int.
real{s1, u1, p1} → real{s2, u2, p2}

→ real{S∗(s1, u1, s2, u2),U∗(s1, u1, s2, u2),P∗(s1, u1, p1, s2, u2, p2)}

U+(s1, u1, s2, u2)) = max(u1, u2) + σ+(s1, s2)
P+(s1, u1, p1, s2, u2, p2) = max(u1, u2) + σ+(s1, s2)−

max(u1 − p1, u2 − p2)− ι(u1 − p1, u2 − p2)

U−(s1, u1, s2, u2)) = max(u1, u2) + σ−(s1, s2)
P−(s1, u1, p1, s2, u2, p2) = max(u1, u2) + σ−(s1, s2)−

max(u1 − p1, u2 − p2)− ι(u1 − p1, u2 − p2)

U×(s1, u1, s2, u2)) = u1 + u2 + 1
P×(s1, u1, p1, s2, u2, p2) = u1 + u2 + 1−

max(u1 + u2 + 1− p1, u1 + u2 + 1− p2)− ι(p1, p2)

U÷(s1, u1, s2, u2)) = u1 − u2 + 1

P÷(s1, u1, p1, s2, u2, p2) = P×(u1, p1, u2, p2)− 1 ι(x, y) =

{
1 if x = y,
0 otherwise.

Fig. 4. Types of the primitives corresponding to the elementary arithmetic operations
∗ ∈ {+,−,×,÷}. The functions S∗ and σ∗ are defined in Figure 5.

but if a > 0 and b < 0 then ufp(a + b) is not greater than max
(
ufp(a), ufp(b)

)
.

The functions P∗ compute the precision of the result. Basically, they compute
the number of bits between the ufp and the ulp of the result.

We end this section by exhibiting some properties of the functions P∗. Let
ε(x) denote the error on x ∈ Realu,p. We have ε(x) < 2u−p+1 = ulp(x). Let
us start with addition. Lemma 1 relates the accuracy of the operands to the
accuracy of the result of an addition between two values x and y. Lemma 2 is
similar to Lemma 1 for product.

Lemma 1. Let x and y be two values such that ε(x) < 2u1−p1+1 and ε(y) <
2u2−p2+1. Let z = x+ y, u = U+(s1, u1, s2, u2) and p = P+(s1, u1, p1, s2, u2, p2).
Then ε(z) < 2u−p+1.

Proof. The errors on addition may be bounded by e+ = ε(x) + ε(y). Then the most
significant bit of the error has weight ufp(e+) and the accuracy of the result is p =
ufp(x+y)−ufp(e+). Let u = ufp(x+y) = max(u1, u2)+σ+(s1, s2) = U+(s1, u1, s2, u2).
We need to over-approximate e+ in order to ensure p. We have ε(x) < 2u1−p1+1

and ε(y) < 2u2−p2+1 and, consequently, e+ < 2u1−p1+1 + 2u2−p2+1. We introduce the
function ι(x, y) also defined in Figure 4 and which is equal to 1 if x = y and 0 otherwise.
We have

ufp(e+) < max(u1 − p1 + 1, u2 − p2 + 1) + ι(u1 − p1, u2 − p2)
≤ max(u1 − p1, u2 − p2) + ι(u1 − p1, u2 − p2)

Let us write p = max(u1−p1, u2−p2)−ι(u1−p1, u2−p2) = P+(s1, u1, p1s2, u2, p2). We
conclude that u = U+(s1, u1, s2, u2), p = P+(s1, u1, p1s2, u2, p2) and ε(z) < 2u−p+1. �

Lemma 2. Let x and y be two values such that ε(x) < 2u1−p1+1 and ε(y) <
2u2−p2+1. Let z = x×y, u = U×(s1, u1, s2, u2) and p = P×(s1, u1, p1, s2, u2, p2).
Then ε(z) < 2u−p+1.

S+ S× and S÷
s1\s2 0 + − >

0 0 + − >

+ + +
+ if u1 < u2
− if u2 < u1
> otherwise

>

− −
+ if u2 < u1
− if u1 < u2
> otherwise

− >

> > > > >

s1\s2 0 + − >

0 0 0 0 0

+ 0 + − >

− 0 − + >

> 0 > > >

S−
s1\s2 0 + − >

0 0 − + >

+ +
− if u1 < u2
+ if u2 < u1
> otherwise

+ >

− − −
− if u2 < u1
+ if u1 < u2
> otherwise

>

> > > > >

σ+

0 + − >
0 0 0 0 0
+ 0 1 0 1
− 0 0 1 1
> 0 1 1 1

σ−

0 + − >
0 0 0 0 0
+ 0 0 1 1
− 0 1 0 1
> 0 1 1 1

Fig. 5. Operators used in the types of the primitives of Figure 4.

Proof. For product, we have p = ufp(x × y) − ufp(e×) with e× = x · ε(y) + y · ε(x) +
ε(x) · ε(y). Let u = u1 + u2 + 1 = U×(s1, u1, s2, u2). We have, by definition of ufp,
2u1 ≤ x < 2u1+1 and 2u2 ≤ y < 2u2+1 . Then e× may be bound by

e× < 2u1+1 · 2u2−p2+1 + 2p2+1 · 2u1−p1+1 + 2u1−p1+1 · 2u2−p2+1

= 2u1+u2−p2+2 + 2u1+u2−p1+2 + 2u1+u2−p1−p2+2 .
(9)

Since u1 +u2−p1−p2 +2 < u1 +u2−p1 +2 and u1 +u2−p1−p2 +2 < u1 +u2−p2 +2,
we may get rid of the last term of Equation (9) and we obtain that

ufp(e×) < max(u1 + u2 − p1 + 2, u1 + u2 − p2 + 2) + ι(p1, p2)
≤ max(u1 + u2 − p1 + 1, u1 + u2 − p2 + 1) + ι(p1, p2) .

Let us write p = max(u1+u2−p1+1, u1+u2−p2+1)−ι(p1, p2) = P×(s1, u1, p1s2, u2, p2).
Then u = U×(s1, u1, s2, u2), p = P×(s1, u1, p1s2, u2, p2) and ε(z) < 2u−p+1. �

Note that, by reasoning on the exponents of the values, the constraints re-
sulting from a product become linear. The equations for subtraction and division
are almost identical to the equations for addition and product, respectively. Note
that the result of a division has one less bit than the result of a product. This
is due to the fact that, even if the operands are finite numbers, the result of the
division may be irrational and possibly needs to be truncated. We conclude this
section with the following theorem which summarize the properties of the types
of the result of the four elementary operations.

|r− vF| < 2u−p+1 ufp(r) ≤ u sign(vF) ≺ s
r{s, u, p} →F vF

(FVal)
vR = r

r{s, u, p} →R vR
(RVal)

e0 → e′0
e0 ∗ e1 → e′0 ∗ e1

(Op1)
e1 → e′1

v ∗ e1 → v ∗ e′1
(Op2) ∗ ∈ {+,−,×,÷,+ ,− ,× ,÷ }

v = v0 ∗ v1
v0 ∗ v1 → v

(Op) ∗ ∈ {+,−,×,÷,+ ,− ,× ,÷ } rec f x.e→ λx.e〈rec f x.e/f〉 (Rec)

e0 → e′0
e0 on e1 → e′0 on e1

(Cmp1)
e1 → e′1

v on e1 → v on e′1
(Cmp2) on∈ {<{u,p}, >{u,p}, <,>}

b = (vF0 − v
F
1 on 2u−p+1)

v0 on{u,p} v1 →F b
(FCmp)

b = (v0 on v1)

v0 on{u,p} v1 →R b
(RCmp) on∈ {<{u,p}, >{u,p}}

b = v0 on v1

v0 on v1 → b
(ACmp) on∈ {=, 6=, <,>,≤,≥}

e1 → e′1
e0 e1 → e0 e′1

(App1)
e0 → e′0

e0 v → e′0 v
(App2) (λx.e) v → e〈v/x〉 (Red)

e0 → e′0
if e0 then e1 else e2 → if e′0 then e1 else e2

(Cond)

v = true

if v then e1 else e2 → e1
(CondTrue)

v = false

if v then e1 else e2 → e2
(CondFalse)

Fig. 6. Operational semantics for our language.

Theorem 1. Let x and y be two values such that ε(x) < 2u1−p1+1 and ε(y) <
2u2−p2+1 and let ∗ ∈ {+,−,×,÷} be an elementary operation. Let z = x ∗ y,
u = U∗(s1, u1, s2, u2) and p = P∗(s1, u1, p1, s2, u2, p2). Then ε(z) < 2u+p−1.

Proof. The cases of addition and product correspond to Lemma 1 and Lemma 2,
respectively. The cases of subtraction and division are similar. �

4 Soundness of the Type System

In this section, we introduce a subject reduction theorem proving the consistency
of our type system. We use two operational semantics →F and →R for the finite
precision and exact arithmetics, respectively. The exact semantics is used for
proofs. Obviously, in practice, only the finite precision semantics is implemented.
We write→ whenever a reduction rule holds for either→F or→R (in this case, we
assume that the same semantics →F or →R is used in the lower and upper parts
of the same sequent). Both semantics are displayed in Figure 6. They concern
the subset of the language of Equation (3) which do not deal with types.

EvalExpr 3 e ::= r{s, u, p} ∈ Realu,p | i ∈ Int | b ∈ Bool | id ∈ Id
| if e0 then e1 else e2 | λx.e | e0 e1 | rec f x.e| e0 ∗ e1

. (10)

In Equation (10), ∗ denotes an arithmetic operator ∗ ∈ {+,−,×,÷,+ ,− ,× ,
÷ }. In Figure 6, Rule (FVal) of →F transforms a syntactic element describing
a real number r{s, u, p} in a certain format into a value vF. The finite precision
value vF is an approximation of r with an error less than the ulp of r{s, u, p}.
In the semantics →R, the real number r{s, u, p} simply produces the value r

without any approximation by Rule (RVal). Rules (Op1) and (Op2) evaluate
the operands of some binary operation and Rule (Op) performs an operation
∗ ∈ {+,−,×,÷,+ ,− ,× ,÷ } between two values v0 and v1.

Rules (Cmp1), (Cmp2) and (ACmp) deal with comparisons. They are similar
to Rules (Op1), (Op2) and (Op) described earlier. Note that the operators <
, >, =, 6= concerned by Rule (ACmp) are polymorphic except that they do not
accept arguments of type real. Rules (FCmp) and (RCmp) are for the comparison
of real values. Rule (FCmp) is designed to avoid unstable tests by requiring
that the distance between the two compared values is greater than the ulp of
the format in which the comparison is done. With this requirement, a condition
cannot be invalidated by the roundoff errors. Let us also note that, with this
definition, x <u,p y 6⇒ y >u,p x or x >u,p y 6⇒ y <u,p x. For the semantics →R,
Rule (RCmp) simply compares the exact values.

The other rules are standard and are identical in →F and →R. Rules (App1),
(App2) and (Red) are for applications and Rule (Rec) is for recursive functions.
We write e〈v/x〉 the term e in which v has been substituted to the free occur-
rences of x. Rules (Cond), (CondTrue) and (CondFalse) are for conditionals.

The rest of this section is dedicated to our subject reduction theorem. First
of all, we need to relate the traces of →F and →R. We introduce new judgments

Γ |= (eF, eR) : t . (11)

Intuitively, Equation (11) means that expression eF simulates eR up to accuracy
t. In this case, eF is syntactically equivalent to eR up to the values which, in eF,
are approximations of the values of eR. The quantification of the approximation
is given by type t.

Formally, |= is defined in Figure 7. These rules are similar to the typing rules
of Figure 2 excepted that they operate on pairs (eF, eR). They are also designed
for the language of Equation (10) and, consequently, deal with the elementary
arithmetic operations +, −, × and ÷ as well as the comparison operators. The
difference between the rules of Figure 2 and Figure 7 is in Rule (VReal) which
states that a real value vR is correctly simulated by a value vF up to accuracy
real{s, u, p} if |vR − vF| < 2u−p+1. It is easy to show, by examination of the
rules of Figure 2 and Figure 7 that

Γ |= (eF, eR) : t =⇒ Γ ` eF : t . (12)

We introduce now Lemma 3 which asse rts the soundness of the type system
for one reduction step. Basically, this lemma states that types are preserved by
reduction and that concerning the values of type real, the distance between the
finite precision value and the exact value is less than the ulp given by the type.

Lemma 3 (Weak subject reduction). If Γ |= (eF, eR) : t and if eF →F e
′
F

and eR →R e
′
R then Γ |= (e′F, e

′
R) : t.

Γ |= (i, i) : int
(Int)

Γ |= (b, b) : bool
(Bool)

Γ (id) = t

Γ |= (id, id) : t
(Id)

sign(r) ≺ s ufp(r) ≤ u
Γ |= (r{s,u,p}, r{s,u,p}) : real{s, u, p}

(SReal)
|vR − vF| < 2u−p+1

Γ |= (vF, vR) : real{s, u, p}
(VReal)

Γ |= (e1F, e1R) : real{s1, u1, p1} Γ |= (e2F, e2R) : real{s1, u1, p1} ∗ ∈ {+,−,×,÷}
Γ |= (e1F ∗ e2F, e1R ∗ e2R) : real{S∗(s1, u1, s2, u2),U∗(s1, u1, s2, u2),P∗(s1, u1, p1, s2, u2, p2)}

(ROp)

Γ |= (e1F, e1R) : real{s1, u, p + 1} Γ |= (e2F, e2R) : real{s1, u, p + 1} ∗ ∈ {<,>}
Γ |= (e1F onu,p e2F, e1R onu,p e2R) : bool

(RCmp)

Γ |= (e1F, e1R) : int Γ |= (e2F, e2R) : int ∗ ∈ {+ ,− ,× ,÷ }
Γ |= (e1F ∗ e2F, e1R ∗ e2R) : int

(IntOp)

Γ |= (e1F, e1R) : t Γ |= (e2F, e2R) : t t 6= real{s, u, p} on∈ {=, 6=, <,>,≤,≥}
Γ |= (e1F on e2F, e1R on e2R) : bool

(ACmp)

Γ |= (e0F, e0R) : bool Γ |= (e1F, e1R) : t1 Γ |= (e2F, e2R) : t2 t = t1 t t2
Γ |= (if e0F then eF1 else e2F, if e0R then e1R else e2R) : t

(Cond)

Γ, x : t1 |= (eF, eR) : t2

Γ |= (λx.eF, λx.eR) : Πx : t1.t2
(Abs)

Γ, x : t1, f : Π.y : t1.t2 |= (eF, eR) : t2

Γ |= (rec f x.eF, rec f x.eR) : Πx : t1.t2
(Rec)

Γ |= (e1F, e1R) : Πx : t0.t1 Γ |= (e2F, e2R) : t2 t2 v t0
Γ |= (e1F e2F, e1R e2R) : t1[x 7→ e2]

(App)

Fig. 7. Simulation relation |= used in our subject reduction theorem.

Proof. By induction on the structure of expressions and case examination on the
possible transition rules of Figure 6.

– If eF ≡ eR ≡ r{s, u, p} then Γ |= (r{s,u,p}, r{s,u,p}) : real{s, u, p} and,
from the reduction rules (FVal) and (RVal) of Figure 6, r{s, u, p} →F vF and
r{s, u, p} →R vR with |vF − vF| < 2u−p+1. So Γ |= (vF, vR) : real{s, u, p}.

– If eF ≡ e0F ∗ e1F and eR ≡ e0R ∗ e1R then several cases must be distinguished.
• If eF ≡ v0F ∗ v1F and eR ≡ v0R ∗ v1R then, by induction hypothesis,
Γ |= (v0F, v0R) : real{s0, u0, p0}, Γ |= (v1F, v1R) : real{s1, u1, p1} and, conse-
quently, from Rule (VReal),

|v0R − v0F| < 2u0−p0+1 and |v1R − v1F| < 2u1−p1+1 . (13)

Following Figure 4, the type t of e is

t =
(
Πs1 : int, u1 : int, p1 : int, s2 : int, u2 : int, p2 : int.
real{s1, u1, p1} → real{s2, u2, p2} →
→ real{S∗(s1, u1, s2, u2),U∗(s1, u1, s2, u2),P∗(s1, u1, p1, s2, u2, p2)})
s1 u1 p1 s2 u2 p2 ,

= real{S∗(s1, u1, s2, u2),U∗(s1, u1, s2, u2),P∗(s1, u1, p1, s2, u2, p2)}
= real{s, u, p}

By Rule (Op), e →F vF and e →R vR and, by Theorem 1, with the as-
sumptions of Equation (13), we know that |vR − vF| < 2u−p+1. Consequently,
Γ |= (vF, vR) : real{s, u, p}.

• If eF ≡ v0F ∗ v1F and eR ≡ v0R ∗ v1R with Γ |= (v0, v1) : int then, by Rule
(Op), e → (v, v) and, by Equation (7), Γ ` v : int. If e ≡ e0 ∗ e1 then, by
Rule (Op1), e → e0 ∗ e′1 and we conclude by induction hypothesis. The case
e ≡ e0 ∗ v1 is similar to the former one.

– If eF ≡ e0F onu,p e1F and eR ≡ e0R onu,p e1R then several cases have to be examined.

• If eF ≡ v0F onu,p v1F and eR ≡ v0R onu,p v1R then by rules (FCmp) and (RCmp)
eF →F bF, eR →R bR with bF = v0F − v1F on{u,p} 2u−p+1 and bF = v0R −
v1R on{u,p} 0. By rule (RCmp) of Figure 7, Γ |= (v0F, v1F) : real{s, u, p}
and Γ |= (v0R, v1R) : real{s, u, p}. Consequently, |v0R − v0F| < 2u−p+1 and
|v1R − v1F| < 2u−p+1. By combining thz former equations, we obtain that
|(v0R − v1R) − (v0F − v1F)| < 2u−p . Consequently, bF = bR and we conclude
that Γ |= (bF, bR) : bool.

• The other cases for eF ≡ e0F onu,p e1F are similar to the cases eF ≡ v0F ∗ v1F
examined previously.

– The other cases simply follow the structure of the terms, by application of the
induction hypothesis. �

Let →∗F (resp. →∗R) denote the reflexive transitive closure of →F (resp. →F).
Theorem 2 expresses the soundness of our type system for sequences of reduction
of arbitrary length.

Theorem 2 (Subject reduction). If Γ |= (eF, eR) : t and if eF →∗F e′F and
eR →∗R e′R then Γ |= (e′F, e

′
R) : t.

Proof. By induction on the length of the reduction sequence, using Lemma 3. �

Theorem 2 asserts the soundness of our type system. It states that the eval-
uation of an expression of type real{s, u, p} yields a result of accuracy 2u−p+1.

5 Experiments

In this section, we report some experiments showing how our type system be-
haves in practice. Section 5.1 presents Numl implementations of usual mathe-
matical formulas while Section 5.2 introduce a larger example demonstrating
the expressive power of our type system.

5.1 Usual Mathematic Formulas

Our first examples concern usual mathematic formulas, to compute the volume
of geometrical objects or formulas related to polynomials. These examples aim at
showing that usual mathematical formulas are typable in our system. We start
with the volume of the sphere and of the cone.

> let sphere r = (4.0 / 3.0) * 3.1415926{+,1,20} * r * r * r ;;
val sphere : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> sphere 1.0 ;;
- : real{+,7,20} = 4.188

> let cone r h = (3.1415926{+,1,20} * r * r * h) / 3.0 ;;
val cone : real{’a,’b,’c} -> real{’a,’b,’c}

-> real{<expr>,<expr>,<expr>} = <fun>

> cone 1.0 1.0 ;;
- : real{+,4,20} = 1.0472

We repeatedly define the function sphere with more precision in order to
show the impact on the accuracy of the results. Note that the results now have
15 digits instead of the former 5 digits.

> let sphere r = (4.0 / 3.0) * 3.1415926535897932{+,1,53} * r * r * r ;;
val sphere : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> sphere 1.0 ;;
- : real{+,7,52} = 4.1887902047863

The next examples concern polynomials. We start with the computation of
the discriminant of a second degree polynomial.

> let discriminant a b c = b * b - 4.0 * a * c ;;
val discriminant : real{’a,’b,’c} -> real{’d,’e,’f} -> real{’g,’h,’i}

-> real{<expr>,<expr>,<expr>} = <fun>

> discriminant 2.0 -11.0 15.0 ;;
- : real{+,8,52} = 1.000000000000

Our last example concerning usual formulas is the Taylor series development
of the sine function. In the code below, observe that the accuracy of the result
is correlated to the accuracy of the argument. As mentioned in Section 2, error
methods are neglected, only the errors due to the finite precision are calculated
(indeed, sin π

8 = 0.382683432 . . .).

let sin x = x - ((x * x * x) / 3.0) + ((x * x * x * x * x) / 120.0) ;;
val sin : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> sin (3.14{1,6} / 8.0) ;;
- : real{*,0,6} = 0.3

> sin (3.14159{1,18} / 8.0) ;;
- : real{*,0,18} = 0.37259

5.2 Newton-Raphson Method

In this section, we introduce a larger example to compute the zero of a function
using the Newton-Raphson method. This example, which involves several higher
order functions, shows the expressiveness of our type system. In the program-
ming session below, we first define a higher order function deriv which takes
as argument a function and computes its numerical derivative at a given point.
Then we define a function g and compute the value of its derivative at point
2.0. Next, by partial application, we build a function computing the derivative

of g at any point. Finally, we define a function newton which searches the zero
of a function. The newton function is also an higher order function taking as
argument the function for which a zero has to be found and its derivative.

> let deriv f x h = ((f (x + h)) - (f x)) / h ;;
val deriv : (real{<expr>,<expr>,<expr>} -> real{’a,’b,’c})

-> real{<expr>,<expr>,<expr>} -> real{’d,’e,’f}
-> real{<expr>,<expr>,<expr>} = <fun>

> let g x = (x*x) - (5.0*x) + 6.0 ;;
val g : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> deriv g 2.0 0.01 ;;
- : real{*,5,51} = -0.9900000000000

> let gprime x = deriv g x 0.01 ;;
val gprime : real{<expr>,<expr>,<expr>} -> real{<expr>,<expr>,<expr>} = <fun>

> let rec newton x xold f fprime = if ((x-xold)<0.01{*,10,20}) then x
else newton (x-((f x)/(fprime x))) x f fprime ;;

val newton : real{*,10,21} -> real{0,10,20} -> (real{*,10,21} -> real{’a,’b,’c})
-> (real{*,10,21} -> real{’d,’e,’f}) -> real{*,10,21} = <fun>

> newton 9.0 0.0 g gprime ;;
- : real{*,10,21} = 5.771

We call the newton function with our function g and its derivative computed
by partial application of the deriv function. We obtain a root of our polynomial g
with a guaranteed accuracy. Note that while Newton-Raphson method converges
quadratically in the reals, numerical errors may perturb the process [4].

6 Conclusion

In this article, we have introduced a dependent type system able to infer the
accuracy of numerical computations. Our type system allows one to type non-
trivial programs corresponding to implementations of classical numerical analysis
methods. Unstable computations are rejected by the type system. The consis-
tency of typed programs is ensured by a subject reduction theorem. To our
knowledge, this is the first type system dedicated to numerical accuracy. We
believe that this approach has many advantages going from early debugging to
compiler optimizations. Indeed, we believe that the usual type float proposed
by usual ML implementations, and which is a simple clone of the type int, is too
poor for numerical computations. We also believe that this approach is a credible
alternative to static analysis techniques for numerical precision [6, 9, 18]. For the
developer, our type system introduces few changes in the programming style,
limited to giving the accuracy of the inputs of the accuracy of comparisons to
allow the typing of certain recursive functions.

A first perspective to the present work is the implementation of a compiler
for Numl. We aim at using the type information to select the most appropriate
formats (the IEEE754 formats of Figure 1, multiple precisions numbers of the
GMP library when needed or requested by the user or fixed-point numbers.) At
longer term, we also aim at introducing safe compile-time optimizations based on
type preservation: an expression may be safely (from the accuracy point of view)

substituted to another expression as long as both expressions are mathematically
equivalent and that the new expression has a greater type than the older one
in the sense of Equation (6). Finally, a second perspective is to integrate our
type system into other applicative languages. In particular, it would be of great
interest to have such a type system inside a language used to build critical
embedded systems such as the synchronous language Lustre [3]. In this context
numerical accuracy requirements are strong and difficult to obtain. Our type
system could be integrated naturally inside Lustre or similar languages.

References

1. ANSI/IEEE: IEEE Standard for Binary Floating-point Arithmetic (2008)
2. Atkinson, K.: An Introduction to Numerical Analysis, 2nd Edition. Wiley (1989)
3. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for

programming synchronous systems. In: POPL. pp. 178–188. ACM Press (1987)
4. Damouche, N., Martel, M., Chapoutot, A.: Impact of accuracy optimization on the

convergence of numerical iterative methods. In: LOPSTR’15. LNCS, vol. LNCS
9527, pp. 1–18. Springer (2015)

5. Damouche, N., Martel, M., Chapoutot, A.: Improving the numerical accuracy of
programs by automatic transformation. STTT 19(4), 427–448 (2017)

6. Darulova, E., Kuncak, V.: Sound compilation of reals. In: POPL’14. pp. 235–248.
ACM (2014)

7. Denis, C., de Oliveira Castro, P., Petit, E.: Verificarlo: Checking floating point
accuracy through monte carlo arithmetic. In: ARITH’16. pp. 55–62. IEEE (2016)

8. Franco, A.D., Guo, H., Rubio-González, C.: A comprehensive study of real-world
numerical bug characteristics. In: ASE. pp. 509–519. IEEE (2017)

9. Goubault, E.: Static analysis by abstract interpretation of numerical programs and
systems, and FLUCTUAT. In: SAS. LNCS, vol. 7935, pp. 1–3. Springer (2013)

10. Graphics, M.: Algorithmic C Datatypes, software version 2.6 edn. (2011),
http://www.mentor.com/esl/catapult/algorithmic

11. Lam, M.O., Hollingsworth, J.K., de Supinski, B.R., LeGendre, M.P.: Automatically
adapting programs for mixed-precision floating-point computation. In: Supercom-
puting, ICS’13. pp. 369–378. ACM (2013)

12. Martel, M.: Floating-point format inference in mixed-precision. In: NFM. LNCS,
vol. 10227, pp. 230–246 (2017)

13. Milner, R., Harper, R., MacQueen, D., Tofte, M.: The Definition of Standard ML.
MIT Press (1997)

14. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically im-
proving accuracy for floating point expressions. In: PLDI. pp. 1–11. ACM (2015)

15. Pierce, B.C.: Types and programming languages. MIT Press (2002)
16. Pierce, B.C. (ed.): Advanced Topics in Types and Programming Languages. MIT

Press (2004)
17. Rubio-Gonzalez, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,

Bailey, D.H., Iancu, C., Hough, D.: Precimonious: tuning assistant for floating-
point precision. In: HPCNSA. pp. 27:1–27:12. ACM (2013)

18. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic taylor expansions. In: FM.
LNCS, vol. 9109, pp. 532–550. Springer (2015)

