
An Overview of Numalis Software Suite
for Reliable Numerical Computation

Arnault Ioualalen
Numalis, Montpellier, France

Email: ioualalen@numalis.com

Matthieu Martel
LAMPS Laboratory & Numalis

Université de Perpignan, France
Email: matthieu.martel@univ-perp.fr

Nicolas Normand
Numalis, Montpellier, France

Email: nnormand@numalis.com

Abstract—Numerical algorithms are used in many areas
but they rely on approximate computations due to the finite
precision computer arithmetic. As critical systems perform
more and more calculations, needs for verification and vali-
dation techniques and for assisted development increase, the
computer arithmetics being particularly not intuitive. It is then
necessary to provide tools to the programmers, to help them to
validate and increase the numerical quality of their codes and,
broadly, to develop more fastly more reliable numerical codes.
In this article, we give a description of the main problems
concerning numerical accuracy encountered in industry at the
software engineering level and we give an overview of the
solutions proposed by the software suite developed by the
Numalis Company. This suite contains tools for verification and
validation by static and dynamic analysis as well as assisted
development tools. The latter tools optimize programs in order
to make them compute more accurate results and they also
infer the least formats, in terms of bit size, in order to fulfill
accuracy requirements.

I. INTRODUCTION

Numerical algorithms are used in many areas ranging
from scientific computing to digital processing in embedded
systems. All these computations necessarily have a lim-
ited accuracy and the needs for verification and validation
techniques increase as quickly as critical tasks relying on
complex computations are delegated to computers, for ex-
ample in cars, aircrafts or space vehicles. In addition to
verification and validation concerns, assisted methods of
conception are strongly desired since it is extremely difficult
to understand the reasons why the implementation of a
formula is numerically inaccurate and how to improve it.
This is because the computer arithmetics, mainly the fixed-
point [15] and floating-point arithmetics [2], are particularly
not intuitive. It is then necessary to provide tools to the
programmers, to help them to validate and increase the
numerical quality of their codes and, broadly, to develop
more fastly more reliable numerical codes.

Numalis is a company specialized in numerical accuracy.
Numalis software suite aims at bringing solutions to the
problems mentionned earlier, for V&V and assisted devel-
opment of numerical algorithms. Numalis activity is mainly
focused on critical embedded systems in defense, aeronautic

and space, automotive but also in other economic activities
such as finance or geophysics.

In this article, we give a return of experience concerning
the needs, at software engineering level, of our consumers
for the development of numerical code and we introduce
Numalis software suite. This suite contains tools for static
analysis by abstract interpretation and dynamic analysis
based on statistical estimation of the test datasets. It also
contains tools for optimizing the accuracy of programs and
for mixed-precision format tuning. This suite bring partial
answers to the challenges raised by our industrial partners.

This article is organized as follows. Section II gives a brief
description of the fixed-point and floating-point arithmetics.
Section III introduces the main challenges in the domain at
software engineering level and Section IV gives an overview
of Numalis Software Suite. Section V concludes.

II. COMPUTER ARITHMETICS

Numerical computations rely on non-intuitive computer
arithmetics, mainly the floating-point and the fixed-point
arithmetic, briefly described hereafter.

An important step towards the design of reliable numerical
software was the definition, in the 1980’s, of the IEEE754
Standard for floating-point arithmetic [2]. A floating-point
number x in base β is defined by x = s · (d0.d1 . . . dp−1) ·
βe = s ·m · βe−p+1 where s ∈ {−1, 1} is the sign, m =
d0d1 . . . dp−1 is the significand, 0 ≤ di < β, 0 ≤ i ≤ p− 1,
p is the precision and e is the exponent. The IEEE754
Standard specifies a few values for β, p, emin and emax

and special values such as NaN (Not a Number) or ±∞ for
overflows. Finally, the IEEE754 Standard defines rounding
modes towards −∞, towards +∞, towards zero and to
the nearest for elementary operations between floating-point
numbers.

The floating-point arithmetic differs strongly from the real
number arithmetic. Values have a finite number of digits and
the algebraic laws such as associativity or distributivity do
not hold. Consequently, the evaluations by a computer of
mathematically equivalent formulas (for example x×(1+x)
and x+ x2) possibly lead to very different results.



There exists no standard for the fixed-point arithmetic
comparable to the IEEE754 Standard. A fixed-point format
[15] 〈w, i〉 depends on the total number of bits w used
to encode the value and on the location of the fixed-point
relative to the most significant bit. In general, the numbers
are encoded using two’s complement and the sequence
of bits bw−1 . . . b0 represents the value −bw−1 · 2i−1 +∑j=w

j=2 bw−j ·2i−j and the distance between two consecutive
numbers is 2i−w. The format of the result of an elementary
operation depends on the formats of its operands.

Implementing efficiently an expression in the fixed-point
arithmetic requires to find an evaluation scheme which
minimizes the total size w of the formats of the intermediary
results. For example, we may give two implementations of
the polynomial x2 − x + 9, with x in the format 〈5, 3〉.
The first scheme corresponds to the direct implementa-
tion and requires 68 bits to store the intermediary results
while the second scheme implements the equivalent formula
(x− 3)× (x− 3) and necessitates 40 bits only [18].

To help programmers to understand more the accuracy
of their numerical algorithms, Numalis provides an online
accuracy toolkit in the form of a small analyzer. This
analyzer allows the user to write programs and discover their
numerical accuracy1.

III. CHALLENGES IN RELIABLE COMPUTATION

The production of reliable numerical code introduces
strong needs of assisted development tools as well as of
verification and validation tools. These needs as even more
important when numerical computations are performed by
critical embedded systems as it is the case in many industries
such as aeronautic, space, automotive, medical instrumenta-
tion, robotics, etc. The returns of experience from Numalis
industrial partners make us identify the following needs.

Numerical Accuracy Determination: Determining the ac-
curacy of the results of a program is a central question for
verification and validation. Needs in this domain become
even more important when the manufactured systems must
be certified, for example in aeronautics. During the last
fifteen years, static analyses of the numerical accuracy
of floating-point computations have been introduced. This
work has also been motivated by a few disasters due
to numerical bugs [1]. While these methods compute an
over-approximation of the worst error arising during the
executions of a program, they operate on final codes, during
the verification phase and not at implementation time. Static
analyses [10], [14], [26] have been proposed and imple-
mented in academic tools such as Fluctuat [14], based on
abstract interpretation or FP-Taylor [26], which performs
a static analysis using Taylor series expansions. Dynamic

1Numalis online accuracy analysis toolkit:
http://www.numalis.com/demonstrateur.php

techniques have also been proposed but they only estimate
the accuracy without formal guaranties [3], [11]
Automatic Accuracy Optimization: Automatically trans-
forming a program at compile-time in function of given
ranges for the inputs and in order to make its numerical
computations more accurate is an important aspect of as-
sisted development in our domain. Indeed, understanding the
reasons why the implementation of a formula is numerically
inaccurate and how to improve it is usually difficult because
computer arithmetic is particularly not intuitive. So, it is
necessary to provide tools to the programmers, to help them
to increase the numerical quality of their codes. Academic
tools have been developed. Salsa [8] takes inter-procedural
imperative programs and optimize then using a source-to-
source transformation. Herbie [24] optimizes the arithmetic
expressions of Scala codes. While Salsa uses a static analysis
to select the best program, Herbie uses dynamic analysis (a
set or random runs). These tools are compared in [9].
Floating-Point Format Determination: This problem, also
related to assisted development, consists of determining the
minimal precision on the inputs and on the intermediate
results of a program performing fixed-point or floating-
point computations in order to ensure a desired accuracy
on the outputs. This allows compilers to select the most
appropriate formats and to save memory, reduce CPU usage
and use less bandwidth for communications. Research work
has been carried out to determine the best floating-point
formats. Darulova and Kuncak use a static analysis to
compute the propagation of errors [10]. In this approach, all
the values have the same format. Martel proposed another
static analysis which makes it possible to determine different
formats for different variables (mixed precision). Chiang
et al. [6] use Symbolic Taylor Expansions to allocate a
precision to the terms of an arithmetic expression (only).
Other approaches rely on dynamic analysis. Precimonious
tries to decrease the precision of variables and checks
whether accuracy requirements are still fulfilled [22], [25].
Lam et al instrument binary codes in order to modify their
precision without modifying the source codes [17].
Fixed-Point Format Determination Determining the best
fixed-point formats is mandatory in order to implement
a numerical algorithm in hardware (e.g. on a FPGA) or
software. This may be done in two steps. First, a range
analysis determines the integer wordlength of each variable
and then the number of bits to allocate to the fractional
part is decided [21]. Various strategies have been proposed
to solve this problem, based on simulation [23] or analytic
models [12], [20].

Other challenges have been identifed but less work have
been done currently to address them. The question of opti-
mizing simultaneously the accuracy and execution time is
recurrent. It has been shown on academic examples that
optimizing the accuracy of numerical iterative algorithms



Spoat
Trust

ANM

Spoat
Vulnerability

V & V
Detection

libUFPA

Wizoat
Tuning

Wizoat
Stability

Assisted Dev.
Transformation

Figure 1. Interactions between the tools of Numalis Software Suite.

accelerate their convergence speed [7]. Time is then saved
thanks to a better accuracy. Finally, much work concerning
formal proofs of algorithms in the floating-point arithmetic
have been done in academic contexts [4], [5].

IV. NUMALIS SOFTWARE SUITE

Numalis Software Suite is intended to answer to the main
challenges enumerated in Section III. For verification and
validation, our tools compute over-approximations of the
ranges of the variables as well as their accuracy, defined
as the distance in the worst case between the result returned
by the machine and the result that we would obtain if all
the computation were done in the exact arithmetic. Our
tools mostly rely on static analysis by abstract interpretation.
However, to avoid some false alarms inherent to the over-
approximations done in static analysis, dynamic analysis
methods are also used. They rely on a statiscical method
which allows us to estimate with high probability the number
of test-cases needed to estimate safely the ranges of the
variables and on a multi-arithmetic library which, thanks to
a homogeneous API, makes it possible to execute easily a
code in various, IEEE754 compliant or multiple precision
arithmetics. The static and dynamic analysis tools may
cooperate in our suite.

The tools for assisted development use the range over-
approximations computed by the V&V tools. They perform
program transformation in order to generate more accurate
codes and mixed-precision floating-point format determina-
tion. Currently, the support of the fixed-point arithmetic is
still under development. The program transformation uses
Abstract Program Expression Graphs [8], [16] to generate
in polynomial space and time an exponential number of
mathematically equivalent expressions among which the
most accurate expression for the floating-point arithmetic is
searched. The ranges provided by the V&V tools are used
to determine the worst errors on the original expressions
and on the candidate optimized expressions. The format
determination also uses the ranges computed by static anal-
ysis to determine the least formats, in mixed precision (i.e.
each variable may have its own format) required in order

to ensure a certain accuracy on the outputs, determined by
the user [19]. This tools also relies on a SMT solver. We
give hereafter a brief description of the tools integrated in
Numalis Software Suite.

• libUFPA is a library which contains many arithmetics
used by the other tools, for V&V and for program
transformation. This library has a uniform API to
use floating-point arithmetic (any IEEE754 format),
multiple precision arithmetic (with the MPFR library),
interval arithmetic and affine arithmetic [13]. libUFPA
supports all the usual elementary functions (e.g. for
trigonometry.)

• ANM is Numalis static analyzer based on abstract
interpretation. ANM uses some of the arithmetic of
libUFPA. As libUFPA, ANM is an internal tool which
provides basic information to the backend tools enu-
merated hereafter. ANM uses relational abstract domains
such as Affine Forms [13].

• Spoat-Vulnerability is Numalis tool
to detect accuracy errors in programs.
Spoat-Vulnerability uses the results of
the static analysis provided by ANM. However,
when this information is not precise enough,
Spoat-Vulnerability performs a local dynamic
analysis in order to obtain more realistic range
estimations (yet unsafe). Several runs are performed
and the results are merged into intervals.

• Spoat-Trust is a tool for statistical analysis to
estimate with high probability how many datasets must
be taken to find safe ranges on the outputs of a program
in function of the ranges of the inputs. Then it generates
the random tests based on the statistical information and
run them using Spoat-Vulnerability.

• Wizoat-Stability optimizes programs. First, it
optimizes arithmetic expressions. It takes as inputs an
expression and ranges for the free variables (given by
the Spoat tools) and generates a new expression, more
accurate as long as the values of the free variables
belong to the given ranges. Then the computations done
at several lines of code of the original program are
merged or combined differently than in the original
code in order to augment the optimization opportu-
nities (otherwise, for example, one cannot optimize
a three address code.) Wizoat-Stability calls
Spoat-Vulnerability to evaluate the accuracy of
the new arithmetic expressions.

• Wizoat-Tuning determines the least floating-point
formats needed in order to ensure a user-defined accu-
racy on the outputs of a code [19]. This tool also relies
on Spoat-Vulnerability and calls a SMT solver
(Z3) for the format inference.

The tools described above support several programming
languages (C, C++, Ada, etc.). We illustrate in Figure 1 how



these tools interact altogether. Basically, the Spoat tools are
for error detection (V&V) while the Wizoat tools perform
program transformation (used in assisted development).

V. CONCLUSION

In this article we have given an overview of the prob-
lems encountered at software engineering level concerning
the development of numerical codes, specially for critical
systems, as well as a description of academic solutions and
of Numalis solutions. Numalis software suite has been used
in several industries, mainly in defense and space industries.

Our Software Suite is still under development. Improv-
ing the precision of the static and dynamic analysis is
an endless problem. We also plan to add the support of
other programming languages (Lustre, Fortran, etc.) Program
optimizations may still be improved in many ways. The
support of fixed-point arithmetic and of parallel programs
are important objectives. In particular, concerning parallel
programs, transformations ensuring the reproductibility of
the results would be of great interest. For all these develop-
ment, Numalis team pay much attention to the latest research
results in the domain and to research collaborations.

REFERENCES

[1] “Patriot missile defense: Software problem led to system
failure at dhahran, saudi arabia,” General Accounting office,
Tech. Rep. GAO/IMTEC-92-26, 1992.

[2] IEEE Standard for Binary Floating-point Arithmetic,
ANSI/IEEE, 2008.

[3] E. T. Barr, T. Vo, V. Le, and Z. Su, “Automatic detection
of floating-point exceptions,” in Principles of Programming
Languages, POPL ’13. ACM, 2013.

[4] S. Boldo, J. Jourdan, X. Leroy, and G. Melquiond, “Verified
compilation of floating-point computations,” J. Autom. Rea-
soning, vol. 54, no. 2, 2015.

[5] M. Brain, C. Tinelli, P. Rümmer, and T. Wahl, “An au-
tomatable formal semantics for IEEE-754 floating-point arith-
metic,” in Symposium on Computer Arithmetic. IEEE, 2015.

[6] W. Chiang, M. Baranowski, I. Briggs, A. Solovyev,
G. Gopalakrishnan, and Z. Rakamaric, “Rigorous floating-
point mixed-precision tuning,” in POPL. ACM, 2017.

[7] N. Damouche, M. Martel, and A. Chapoutot, “Impact of ac-
curacy optimization on the convergence of numerical iterative
methods,” in LOPSTR, ser. LNCS, vol. 9527. Springer, 2015.

[8] ——, “Intra-procedural optimization of the numerical ac-
curacy of programs,” in FMICS, ser. LNCS, vol. 9128.
Springer, 2015.

[9] N. Damouche, M. Martel, P. Panchekha, C. Qiu, A. Sanchez-
Stern, and Z. Tatlock, “Toward a standard benchmark format
and suite for floating-point analysis,” in NSV, ser. LNCS, vol.
10152, 2016.

[10] E. Darulova and V. Kuncak, “Sound compilation of reals,” in
POPL. ACM, 2014.

[11] C. Denis, P. de Oliveira Castro, and E. Petit, “Verificarlo:
Checking floating point accuracy through monte carlo arith-
metic,” in ARITH. IEEE Computer Society, 2016.

[12] C. F. Fang, R. A. Rutenbar, and T. Chen, “Fast, accurate
static analysis for fixed-point finite-precision effects in DSP
designs,” in ICCAD’03. IEEE / ACM, 2003.

[13] K. Ghorbal, E. Goubault, and S. Putot, “The zonotope abstract
domain taylor1+,” in CAV, ser. LNCS, vol. 5643, 2009.

[14] E. Goubault and S. Putot, “Static analysis of finite precision
computations,” in VMCAI, ser. LNCS, vol. 6538, 2011.

[15] M. Graphics, Algorithmic C Datatypes,
software version 2.6 ed., 2011,
http://www.mentor.com/esl/catapult/algorithmic.

[16] A. Ioualalen and M. Martel, “A new abstract domain for the
representation of mathematically equivalent expressions,” in
SAS, ser. LNCS, vol. 7460. Springer, 2012.

[17] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P.
LeGendre, “Automatically adapting programs for mixed-
precision floating-point computation,” in Supercomputing,
ICS’13. ACM, 2013.

[18] M. Martel, “Accurate evaluation of arithmetic expressions,”
Electr. Notes Theor. Comput. Sci., vol. 287, 2012.

[19] ——, “Floating-point format inference in mixed-precision,”
in NASA Formal Methods, vol. 10227, 2017.

[20] M. Martel, A. Najahi, and G. Revy, “Code size and accuracy-
aware synthesis of fixed-point programs for matrix multipli-
cation,” in PECCS. SciTePress, 2014.

[21] D. Ménard, D. Chillet, and O. Sentieys, “Floating-to-fixed-
point conversion for digital signal processors,” EURASIP J.
Adv. Sig. Proc., vol. 2006, 2006.

[22] C. Nguyen, C. Rubio-Gonzalez, B. Mehne, K. Sen, J. Dem-
mel, W. Kahan, C. Iancu, W. Lavrijsen, D. H. Bailey, and
D. Hough, “Floating-point precision tuning using blame anal-
ysis,” in ICSE. ACM, 2016.

[23] Z. Nikolic, H. T. Nguyen, and G. Frantz, “Design and
implementation of numerical linear algebra algorithms on
fixed point dsps,” EURASIP J. Adv. Sig. Proc., 2007.

[24] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tat-
lock, “Automatically improving accuracy for floating point
expressions,” in PLDI. ACM, 2015.

[25] C. Rubio-Gonzalez, C. Nguyen, H. D. Nguyen, J. Demmel,
W. Kahan, K. Sen, D. H. Bailey, C. Iancu, and D. Hough,
“Precimonious: tuning assistant for floating-point precision,”
in High Performance Computing, Networking, Storage and
Analysis. ACM, 2013.

[26] A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalakrish-
nan, “Rigorous estimation of floating-point round-off errors
with symbolic taylor expansions,” in FM, ser. LNCS, vol.
9109. Springer, 2015.


