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Abstract. Among other objectives, rewriting programs serves as a use-
ful technique to improve numerical accuracy. However, this optimization
is not intuitive and this is why we switch to automatic transformation
techniques. We are interested in the optimization of numerical programs
relying on the IEEE754 floating-point arithmetic. In this article, our
main contribution is to study the impact of optimizing the numerical ac-
curacy of programs on the time required by numerical iterative methods
to converge. To emphasize the usefulness of our tool, we make it opti-
mize several examples of numerical methods such as Jacobi’s method,
Newton-Raphson’s method, etc. We show that significant speedups are
obtained in terms of number of iterations, time and flops.
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1 Introduction

A few decades ago, program transformation techniques have been successfully
applied to specialize programs by partial evaluation [16]. For example, the perfor-
mances of Knuth-Morris-Pratt’s algorithm were reached by specialized versions
of the naive, quadratic, pattern matching algorithm [4]. Other killer applications
of partial evaluation were ranging from ray-tracing [16] to communication pro-
tocol optimization [22]. In this context, partial evaluation was used to optimize
the execution time of programs. Our current work seeks another grail, namely
the optimization of the numerical accuracy of computations carried out in the
IEEE754 floating-point arithmetic [2, 23]. As for partial evaluation, we perform
source to source transformations guided by partial information on the data used
at run-time [14]. In our case, we need ranges for the input variables of the pro-
grams, obtained by abstract interpretation of their codes [5]. In former articles,
we have shown how our techniques make it possible to improve the accuracy of
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various algorithms coming from control theory or from numerical analysis [8, 9,
15]. In this article, we study the effect of our transformation on the convergence
of well-known iterative numerical methods such as Newton-Raphson’s or Jacobi’s
method [17]. We show that more accurate implementations obtained by auto-
matic program transformation converge much faster than the original ones. In
other words, less iterations are needed to reach a result with a given accuracy. As
a consequence, improving the accuracy significantly improves the performances
of this class of programs, bringing us back to the concerns of partial evaluation.

In former work we have shown how to optimize automatically intra-procedural
programs [8]. To optimize programs, we use static analysis by abstract interpre-
tation [5, 11] to over-approximate the roundoff errors as well as a set of rewriting
rules for the transformation itself, applied to programs that are written in SSA
Form [7]. We have experimented our tool to improve the numerical accuracy
of small control command programs (e.g. PID and lead-lag controllers) and nu-
merical procedures (trapeze rule and Runge-Kutta methods [8]). We have also
demonstrated the efficiency of our tool to optimize slightly larger codes like a
rocket trajectory simulation code of about O(100) lines of code [9].

Our main contribution in this article is to show that our technique improves
the execution time of programs by increasing their numerical accuracy. By op-
timizing programs to be more accurate, we accelerate their convergence speed.
In order to demonstrate the impact of the accuracy on the convergence time,
we have chosen a set of four representative iterative methods which are Jacobi’s
and Newton-Raphson’s method, a method to compute the largest Eigenvalue and
Gram-Schmidt’s method. Significant speedups are obtained in terms of number
of iterations, time and total number of floating-point operations (flops).

In Section 2, we discuss how we compute the error on the numerical accuracy
as well as the basic techniques used to rewrite programs. In Section 3, we detail
the programs that we want to optimize. We give the programs before and after
optimization together with experimental results. We conclude in Section 4.

2 Program Transformation for Numerical Accuracy

In this section, we first introduce the method that we use to compute the errors
on the numerical accuracy. In sections 2.2 and 2.3, we also recall the transfor-
mation techniques used to optimize the numerical accuracy of expressions and
programs and which are detailed in [8, 15]. All the material introduced in this
section is used in the tool that we use to optimize the programs of Section 3.

2.1 Floating-Point Arithmetic and Error Bound Computation

The floating-point arithmetic is defined by the IEEE754 Standard [2, 23]. Floating-
point numbers are used to encode real numbers. However, because they are a
finite representation of their mathematical cousins, roundoff errors arise during
computations. A floating-point number x is defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (1)
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where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the mantissa with digits 0 ≤
di < β, 0 ≤ i ≤ p− 1, p is the precision and e is the exponent, emin ≤ e ≤ emax.
The IEEE754 Standard specifies several formats for the floating-point numbers
by providing specific values for p, β, emin and emax. It also defines some rounding
modes, towads +∞, −∞, 0 and to the nearest. Our transformation technique,
introduced in sections 2.2 and 2.3, is independent of the selected rounding mode
and, in this article, we assume that all the floating-point computations are done
by using the rounding mode to the nearest. Let us write ↑+∞, ↑−∞, ↑0 and
↑∼ the rounding functions, the IEEE754 Standard defines the semantics of the
elementary operations by:

x~r y =↑r (x ∗ y) (2)

where ~r ∈ {+,−,×,÷} is computed by using the rounding mode r and ∗ de-
notes an exact operation. Because of the roundoff errors, the results of the com-
putations are not exact. For example, let us consider two functions f and g which
are mathematically equivalent. We have f(x) = x2 − 2.0 × x + 1.0 and g(x) =
(x − 1.0) × (x − 1.0). If we compute f(0.999) we get 1.00000000002875566e−6

and if we compute g of the same value, we obtain 1.00000000000000186e−6. On
small computations, we have obtained already different results.

We present now the computation of errors on the numerical accuracy of
arithmetic expressions [19]. These errors are stored in an abstract value [5] using
a pair of intervals. The first interval contains the range of the floating-point
values of the program, and the second one contains the range of the errors
obtained by subtracting the floating-point values from the exact ones. In the
abstract value denoted by (x], µ]) ∈ E], we have x] the interval corresponding
to the range of the values and µ] the interval of errors on x]. This value x]

abstracts a set of concrete values {(x, µ) : x ∈ x] and µ ∈ µ]} by intervals in a
component-wise way. We introduce now the semantics of arithmetic expressions
on E]. We approximate an interval x] with real bounds by an interval based
on floating-point bounds, denoted by ↑]∼ (x]). Here bounds are rounded to the
nearest (see Equation (3)).

↑]∼ [(x, x)] = [↑∼ (x), ↑∼ (x)]. (3)

In the other direction, we have the function ↓]∼ that abstracts the concrete
function ↓∼. It computes the exact value of the error ↓∼ (x) = x− ↑∼ (x). Every
error associated to x ∈ [x, x] is included in ↓]∼ [(x, x)]. We have

↓]∼ [(x, x)] = [−y, y] with y =
1

2
ulp
(
max(|x|, |x|)

)
. (4)

Formally, the unit in the last place, denoted by ulp(x), consists of the weight of
the least significant digit of the floating-point number x. Equations (5) and (6)
give the semantics of the addition and multiplication over E]. If we sum two
floating-point numbers, we may add the errors generated by the operands to the
error produced by the roundoff of the result. When multiplying two floating-point

numbers, the semantics is given by the development of (x]1 + µ]1) × (x]2 + µ]2).

(x]1, µ
]
1) + (x]2, µ

]
2) =

(
↑]∼ (x]1 + x]2), µ]1 + µ]2+ ↓]∼ (x]1 + x]2)

)
, (5)

(x]1, µ
]
1)× (x]2, µ2,

] ) =
(
↑]∼ (x]1×x

]
2), x]2×µ

]
1 +x]1×µ

]
2 +µ]1×µ

]
2+ ↓]∼ (x]1×x

]
2)
)
. (6)
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This semantics is used to select the most accurate expression, in the sense
that it minimizes µ] during the transformation of expressions introduced in the
next section. To analyze statically a full program, we use a standard abstract
interpretation of commands [5, 19] with the abstract domain E] of values.

2.2 Transformation of Expressions

To introduce the transformation of arithmetic expressions, we consider variables
id ∈ V with V a finite set, constants cst ∈ F with F the set of floating-point
numbers and the operators +, −, × and ÷. The syntax is

Expr 3 e ::= id | cst | e+ e | e− e | e× e | e÷ e. (7)

Here, we briefly present former work [15, 20, 25] to semantically transform [6]
arithmetic expressions using Abstract Program Expression Graph (APEG). This
data structure remains in polynomial size while dealing with an exponential num-
ber of equivalent expressions. An APEG is defined inductively as follows: (1) A
value v or a variable x is an APEG, (2) An expression p1 ∗p2 is an APEG, where

p1 and p2 are APEGs and ∗ is a binary operator, (3) A box ∗(p1, . . . , pn) is an

APEG, where ∗ is a commutative and associative operator and the pi, 1 ≤ i ≤ n,
are APEGs and (4) A non-empty set {p1, . . . , pn}, called equivalence class, of
APEGs is an APEG where pi, 1 ≤ i ≤ n, is not a set of APEGs itself.
An example of APEG is given in Figure 1. When an equivalence class (denoted
by a dotted ellipse in Figure 1) contains many APEGs p1, . . . , pn then one
of the pi 1 ≤ i ≤ n may be selected in order to build an expression. A box

∗(p1, . . . , pn) represents any parsing of the expression p1 ∗ . . .∗pn. From an im-

plementation point of view, when several equivalent expressions share a common
sub-expression, the latter is represented only once in the APEG. Then APEGs
provide a compact representation of a set of equivalent expressions and make it
possible to represent in an unique structure many equivalent expressions of very
different shapes. For readability reasons, in Figure 1, the leafs corresponding to
the variables a, b and c are duplicated while, it practice, they are defined only
once in the structure. The set {p} of expressions contained inside an APEG p is
defined inductively as follows: (1) If p is a value v or a variable x then (p) = {v} or
(p) = {x}, (2) If p is an expression p1∗p2 then (p) =

⋃
e1
∈ (p1), e2 ∈ (p2)e1∗e2,

(3) If p is a box ∗(p1, . . . , pn) then (p) contains all the parsings of e1 ∗ . . . ∗ en

2 a

×

+

b

□

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Fig. 1. APEG for the expression e =
(
(a+ a) + c

)
× c.
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p1 p2

+ p3

×

p1 p2

+ p3

×

p1 p3

×

+

p2 p3

×

p1 p2

✳ p3

✳

✳ ( p1,p2,p3 )

✳ ( p1,…,pn,p'1,…,p'm )

✳ ( p'1,…,p'm )✳ ( p1,…, ,…,pn )

Fig. 2. Some rules for APEG construction by pattern matching.

for all e1 ∈ (p1), . . . , en ∈ (pn) and (4) If p is an equivalence class {p1, . . . , pn}
then (p) =

⋃
1≤i≤n (pi).

For instance, the APEG p of Figure 1 represents all the following expressions:

(p) =


(
(a+ a) + b

)
× c,

(
(a+ b) + a

)
× c,

(
(b+ a) + a

)
× c,(

(2× a) + b
)
× c, c×

(
(a+ a) + b

)
, c×

(
(a+ b) + a

)
,

c×
(
(b+ a) + a

)
, c×

(
(2× a) + b

)
, (a+ a)× c+ b× c,

(2× a)× c+ b× c, b× c+ (a+ a)× c, b× c+ (2× a)× c

 (8)

In their article on EPEGs, R. Tate et al. use rewritting rules to extend the
structure up to saturation [25, 24]. In our context, such rules would consist of
performing some pattern matching in an existing APEG p and then adding
new nodes in p, once a pattern has been recognized. For example, the rules
corresponding to distributivity and box construction are given in Figure 2. An
alternative technique for APEG construction is to use dedicated algorithms.
Such algorithms, working in polynomial time, have been proposed in [15].

2.3 Transformation of Commands

In this section, we focus on the transformation of commands which is done using
a set of rewriting rules. Our language is made of assignments, conditionals, loops
and sequences of commands. The syntax is

Com 3 c ::= id = e | c1 ; c2 | ifΦ e then c1 else c2 | whileΦ e do c | nop. (9)

The transformation relies on several hypotheses. First of all, programs are as-
sumed to be in static single assignment form (SSA form) [7]. The principle of this
intermediary representation is that every variable may be assigned only once in
the source code and must be used before its use. To undestand this intermediary
representation, let us consider the example of Figure 3. In the original program,
x is assigned several times. In the program in SSA form, a new variable x1, x2,
etc. is used for each assignment and at the junction of control paths (in condi-
tionals or loops), a Φ-node Φ(x1, x2, x3) indicates that we assign to x1 the value
of x2 or x3 depending on where we are coming from. The second hypothesis is
that we optimize a reference variable defined by the user. Our transformation is
defined by rules using states 〈c, δ, C, ν, β〉 where:

– c is a command, as defined in Equation (9),
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– δ is an environment δ : V → Expr which maps variables to expressions.
Intuitively, this environment records the expressions assigned to variables in
order to inline them later on in larger expressions,

– C ∈ Ctx is a single hole context [12]. It records the program englobing the
current expression to be transformed,

– ν ∈ V denotes the reference variable that we aim at optimizing,
– β ⊆ V is a list of assigned variables that should not be removed from the

code. Initially, β = {ν}, i.e., the target variable ν must not be removed.

The environment δ is used to discard assignments from programs and to re-insert
the expressions when the variables are read, in order to build larger expressions.

Let us consider first assignments. If (i) the variable v of some assignment
v = e does not exist in the domain of δ, if (ii) v 6∈ β and if (iii) v 6= ν then we
memorize e in δ and we remove the assignment from the program. Otherwise,
if one of the conditions (i), (ii) or (iii) is not satisfied then we rewrite this
assignment by inlining the variables saved in δ in the concerned expression.
Note that, when transforming programs by inlining expressions in variables, we
get larger formulas. The basic idea, in our implementation, when dealing with
too large expressions, is to create intermediary variables and to assign to them
the sub-expressions obtained by slicing the global expression at a given level
of the syntactic tree. The last step consists of re-inserting these intermediary
variables into the main program.

For example, let us consider the program below in which three variables x, y
and z are assigned. We assume that z is the variable that we aim at optimizing
and a = 0.1, b = 0.01, c = 0.001 and d = 0.0001 are constants.

〈x = a + b ; y = c + d ; z = x + y , δ, [], ν = z, [z]〉
−→ 〈nop ; y = c + d ; z = x + y, δ′ = δ[x 7→ a + b], [], ν = z, [z]〉
−→ 〈nop ; nop ; z = x + y, δ′′ = δ′[y 7→ c + d], [], ν = z, [z]〉
−→ 〈nop ; nop ; z = ((d + c) + b) + a, δ′′, [], ν = z, [z]〉

(10)

In Equation (10), the environment δ and the context C are initialy empty and
the list β contains the reference variable z. We remove the variable x and
memorize it in δ. So, the line corresponding to the variable discarded is replaced
by nop and the new environment is δ = [x 7→ a + b]. We then repeat the same
process on the variable y. For the last step, we may not remove z because it is
the reference variable. Instead, we substitute, in z, x and y by their values in δ
and we transform the expression using the technique described in Section 2.2.

Our tool also transforms conditionals. If a certain condition is always true or
false, then we keep only the right branch, otherwise, we transform both branches

x = 2 ;
If (x > 1) then
 x = x * 2 

Else
 x = x / 2

Endif ;
z = x ; 

x1 = 2 ;
If (x1 > 1) then
  x2 = x1 * 2  
Else
  x3 = x1 / 2  
Endif ;
ϕ(x4,x2,x3)
 z = x4 ;         

Fig. 3. Original program (left) and its SSA Form (right).
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of the conditional. When it is necessary, we re-inject variables that have been
discarded from the main program. Let us take another example to explain how
we transform conditionals.

x1 = 0; ifΦ(y3,y1,y2) x1 > 1 then y1 = x1 + 2; else y2 = x1 − 1; ν = y3. (11)

First of all, x1 is stored in δ. Then, we transform recursively the new program

ifΦ(y3,y1,y2) x1 > 1 then y1 = x1 + 2; else y2 = x1 − 1; ν = y3. (12)

This program is semantically incorrect since the test is undefined. So we re-inject
the statement x1 = 0 in the program and add x1 to the list β in order to avoid
an infinite loop in the transformation.

For a sequence c1; c2, the first command c1 is transformed into c′1 in the
current environment δ, C, ν and β and a new context C ′ is built which inserts
c′1 inside C. Then c2 is transformed into c′2 using the context C[c′1; []], the formal
environments δ′ and the list β′ resulting from the transformation of c1. Finally,
the state 〈c′1 ; c′2, δ

′′, β′′〉 is returned.

Other transformations have been defined for while loops. A first rule makes
it possible to transform the body of the loop assuming that the variables of
the condition have not been stored in δ. In this case, the body is optimized in
the context C[whileΦ e do []] where C is the context of the loop. A second rule
builds the list V = V ar(e) ∪ V ar(Φ) where V ar(Φ) is the list of variables read
and written in the Φ nodes of the loop. The set V is used to achieve two tasks:
firstly, it is used to build a new command c′ corresponding to the sequence of
assignments that must be re-inserted. Secondly, the variables of V are removed
from the domain of δ and added to β. The resulting command is obtained by
transforming c′;whileΦ e do c with δ′ and β ∪ V .

3 Case Studies

In this section, we consider four iterative programs performing numerical compu-
tations: Jacobi’s Method, Newton-Raphson’s Method, an Iterated Power Method
used to compute the largest eigenvalue of a matrix and an iterative orthogonal-
ization algorithm more stable than Gram-Schmidt Method. We demonstrate the
efficiency of our techniques in accelerating the convergence of these algorithms
by measuring the number of iterations before and after rewriting. We present
speedups in terms of execution time and number of floating-point operations
needed to achieve the computation.

We have implemented the original and optimized numerical iterative meth-
ods in the C programming language, compiled with GCC 4.2.1, and made them
run on an Intel Core i5 with 4 Go memory in IEEE754 single precision in or-
der to emphasize the effect of the finite precision. Programs are compiled with
the default optimization level −O2. We have tried other levels of optimization
without observing significant changes in our results.
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3.1 Linear Systems of Equations

We start with a first case study concerning Jacobi’s method [17] which consists
of an iterative computation that solves linear systems of the form Ax = b. From
this equation, we build a sequence of vectors (x(0), x(1), ... , x(k), x(k+1), ... )
that converges towards the solution x(k) of the system of linear equations.

To build the algorithm corresponding to this method, we decompose the
initial matrix A into three matrices. The first one D contains the diagonal terms
aii of the matrix. The second U contains the terms of the matrix which are above
the main diagonal of A (aij with j > i) and the last one L contains the remaining
terms of A, i.e., the terms that are below the main diagonal (aij with j < i).

So, after transforming the matrix A, we have the following equation to solve
Dx = b− (L + U)x. To compute x(k+1), we use:

x
(k+1)
i =

bi −
n∑

j=1,j 6=i
aijx

(k)
j

aii
where x(k) is known. (13)

The method iterates until |x(k+1)
i − xi| < ε for the desired xi, 1 ≤ i ≤ n. A

sufficient condition for the stability of Jacobi’s method is that

|aii| >
n∑

j=1,j 6=i

|aij |. (14)

Let us now examine how we can improve the convergence of Jacobi’s method on
the example given in Equation (15). This system is stable with respect to the
sufficient condition of Equation (14) but it is close to be unstable in the sense

that ∀i, 1 ≤ i ≤ 4, |aii| ≈
j=4∑

j=1,j 6=i
|aij |.


0.62 0.1 0.2 −0.3
0.3 0.602 −0.1 0.2
0.2 −0.3 0.6006 0.1
−0.1 0.2 0.3 0.601

 ·

x1
x2
x3
x4

 =


1.0/2.0
1.0/3.0
1.0/4.0
1.0/5.0

 . (15)

We describe this system using the notations of Equation (13). To solve Equa-
tion (15) by Jacobi’s method, we use the algorithm presented in Figure 4. This
program is transformed with our tool by using the set of transformation rules
described in Section 3. Note that, in the version of this program given to our

eps = 10e-16; a11 = 0.61; a22 = 0.602; a33 = 0.6006; a44 = 0.601;
b1 = 0.5; b2 = 1.0/3.0; b3 = 0.25; b4 = 1.0/5.0;
while (e > eps) {

x_n1 = (b1/a11) - (0.1/a11) * x2 - (0.2/a11) * x3 + (0.3/a11) * x4;
x_n2 = (b2/a22) - (0.3/a22) * x1 + (0.1/a22) * x3 - (0.2/a22) * x4;
x_n3 = (b3/a33) - (0.2/a33) * x1 + (0.3/a33) * x2 - (0.1/a33) * x4;
x_n4 = (b4/a44) + (0.1/a44) * x1 - (0.2/a44) * x2 - (0.3/a44) * x3;
e = x_n1 - x1; x1 = x_n1; x2 = x_n2; x3 = x_n3; x4 = x_n4; }

Fig. 4. Listing of the initial program of Jacobi’s method.
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eps = 10e-16 ;
while (e > eps) {

TMP_1 = (0.553709856035437 - (x1 * 0.498338870431894)) ;
TMP_2 = (0.166112956810631 * x3) ;
TMP_6 = (0.333000333000333 * x1) ;
x_n1 = (((0.819672131147541 - (0.163934426229508 * ((TMP_1 + TMP_2) - (0.332225913621263

* x4)))) - (0.327868852459016 * (((0.416250416250416 - TMP_6) + (0.4995004995005 * x2))
- (0.166500166500167 * x4)))) + (0.491803278688525 * (((0.332778702163062
+ (0.166389351081531 * x1)) - (0.332778702163062 * x2)) - (0.499168053244592 * x3)))) ;

x_n2 = (((0.553709856035437 - (0.498338870431894 * x_n1)) + (0.166112956810631
* (((0.416250416250416 - TMP_6) + (0.4995004995005 * x2)) - (0.166500166500167 * x4))))
- (0.332225913621263 * (((0.332778702163062 + (0.166389351081531 * x1))
- (0.332778702163062 * x2)) - (0.499168053244592 * x3)))) ;

x_n3 = (((0.416250416250416 - (0.333000333000333 * x_n1)) + (0.4995004995005 * x_n2))
- (0.166500166500167 * (((0.332778702163062 + (0.166389351081531 * x1))
- (0.332778702163062 * x2)) - (0.499168053244592 * x3)))) ;

x_n4 = (((0.332778702163062 + (0.166389351081531 * x_n1)) - (0.332778702163062 * x_n2))
- (0.499168053244592 * x_n3)) ;

e = (x_n4 - x4) ; x1 = x_n1 ; x2 = x_n2 ; x3 = x_n3 ; x4 = x_n4 ; }

Fig. 5. Listing of the optimized program of Jacobi’s method.

tool, we have unfolded the body of the while loop twice. This makes it possible to
rewrite more drastically the code by mixing the computations of both iterations.
In this example, without unfolding, we win very few iterations and, obviously,
if we unfold the body of the loop more than twice, our tool improves even more
the accuracy at the price of a longer code. Note that in the examples of the next
sections, we do not perform such an unfolding because our tool already optimizes
significantly the original codes (results would be even better with unfolding).

The program corresponding to Jacobi’s method after optimization is shown
in Figure 5. Note that this code is rather not intuitive and could very difficultly
be written by hand. Concerning the accuracy of the variables, our tool states
that the percentage of the optimization computed by the abstract semantics of
Section 2 is up to 44.5%. This means that the bound on the numerical error of
the computed values of xi, 1 ≤ i ≤ 4 at any iteration is reduced by 44.5%.

In Figure 6, one can see the difference between the original and the trans-
formed programs in term of the number of iterations needed to compute x1,
x2, x3 and x4. Roughly speaking, about 15% less iterations are needed with the
optimized code. Obviously, the fact that the body of the loop is unfolded twice,
in the optimized code is taken into account in the computation of the number
of iterations needed to converge.

xi Initial Num of iteration Iterations Num after optimization Difference Percentage

x1 1891 1628 263 14.0
x2 2068 1702 366 17.3
x3 2019 1702 317 15.7
x4 1953 1628 325 16.7

Fig. 6. Number of iterations of Jacobi’s method before and after optimization to com-
pute xi, 1 ≤ i ≤ 4.
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3.2 Zero Finding

Newton-Raphson’s Method [17] is a numerical method used to compute the
successive approximations of the zeros of a real-valued function. In order to
understand how this method works, let us start with the derivative f ′(x) of the
function f which may be used to find the slope, and thus the equation of the
tangent to the curve at a specified point. The method starts in an interval, for
the equation f(x) = 0, in which there exists only one solution, the root a.

We choose a value u0 close enough to a and then we build a sequence (un)n∈N
where un+1 is obtained from un, as the abscissa of the meet point of the x-axis
and the tangent at point (un, f(un)) to the function f . The final formula is given
in Equation (16). Note that the computation stops when |un−1 − un| < ε.

un+1 = un −
f(un)

f ′(un)
. (16)

In general, Newton-Raphson’s converges very quickly (quadratic convergence)
but it may be slower if the computation of f or f ′ is inaccurate. For our case
study, we have chosen functions which are difficult to evaluate in the IEEE754
floating-point arithmetic. Let us consider the function f(x) = (x − 2)5. The
developed formula of f and its derivative f ′ are:

f(x) = x5 − 10x4 + 40x3 − 80x2 + 80x− 32, (17)

f ′(x) = 5x4 − 40x3 + 120x2 − 160x+ 80. (18)

It is well-known from floating-point arithmetic experts that evaluating the
developed form of a polynomial close to a multiple root may be quite inaccu-
rate [18]. Consequently, this example presents some numerical difficulties for
Newton-Raphson’s method which converges slowly in this case.

The algorithm corresponding to Equation (16) is given in Figure 7. We recog-
nize the computation of f(x) and its derivative f ′(x) called ff . When optimizing
this program with our tool, we get the program of Figure 8. The accuracy of the
xi’s is improved up to 1.53% following the semantics of Section 2.

The results given in Figure 9 show how much our tool optimizes the number
of iterations needed to converge. Obviously, this number of iterations needed to
converge to the solution with a given precision depends on the initial value x0.
We have experimented several initial values. We make x0 go from 0 to 3 with
a step of 0.1. The 30 results are presented in Figure 9. Due to the numerical
inaccuracies, the number of iterations ranges from 10 to 1200, approximatively.
It is always close to 10 with the transformed program.

eps = 0.0005 ; e = 1.0 ; x = 0.0 ;
while (e > eps){

f = (x*x*x*x*x) - (10.0*x*x*x*x) + (40.0*x*x*x) - (80.0*x*x) + (80.0*x) - (32.0) ;
ff = (5.0*x*x*x*x) - (40.0*x*x*x) + (120.0*x*x) - (160.0*x) + (80.0) ;
x_n = x - (f / ff) ;
e = (x - x_n) ; x = x_n ;
if (e < 0.0) { e = (e * (-1.0)) ; } else { e = (e * 1.0) ; } ; }

Fig. 7. Listing of the initial Newton-Raphson’s program.
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eps = 0.0005 ; e = 1.0 ; x = 0.0 ; x_n = 1.0 ;
while (e > eps){

TMP_1 = (((((x * x) * x) * x) * x) - ((((10.0 * x) * x) * x) * x)) ;
TMP_2 = ((x * x) * (40.0 * x)) ;
TMP_3 = (80.0 * x) ;
TMP_5 = (((5.0 * x) * x) * (x * x)) ;
TMP_6 = ((x * x) * (40.0 * x)) ;
TMP_7 = (120.0 * x) ;
x_n = (x - (((((TMP_1 + TMP_2) - (TMP_3 * x)) + TMP_3) - 32.0)

/ ((((TMP_5 - TMP_6) + (TMP_7 * x)) - (160.0 * x)) + 80.0))) ;
e = (x - x_n) ; x = x_n ;
if (e < 0.0) { e = (e * (-1.0)) ; } else { e = (e * 1.0) ; } ; }

Fig. 8. Listing of the optimized Newton-Raphson’s program.
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Fig. 9. Number of iterations of the Newton-Raphson’s Method before and after opti-
mization for initial values ranging from 0 to 3 (30 runs with a step of 0.1).

3.3 Eigenvalue Computation

The Iterated Power Method is a method used to compute the largest eigenvalue
of a matrix and the related eigenvector [10]. We start by fixing an arbitrary initial
vector x(0) containing a single non-zero element. Next, we build an intermediary

vector y(1) such that Ax(0) = y(1). Then, we build x(1) by renormalizing y(1)

so that the selected component is again equal to 1. This process is repeated up
to convergence. Optionally, we may change the reference vector if it converges
to 0. Note that the renormalization factor converges to the largest eigenvalue
and x converges to the related eigenvector, under the conditions that the largest
eigenvalue is unique and that all eigenvectors are independent. The convergence
speed is proportional to the ratio between the two largest eigenvalues (in absolute
value). For our experiments, let us take a square matrix A of dimention 4 with
the eigenvector (0.0 0.0 0.0 1.0)T given on the Equation (15):

A =


d 0.01 0.01 0.01

0.01 d 0.01 0.01
0.01 0.01 d 0.01
0.01 0.01 0.01 d

with d ∈ [175.0, 200.0]. (19)
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eps = 0.0005 ; d = 175.0 ; v1 = 0.0 ; v2 = 0.0 ; v3 = 0.0 ; v4 = 1.0 ; a41 = 0.01 ; a44 = d ;
a11 = d ; a12 = 0.01 ; a13 = 0.01 ; a14 = 0.01 ; a21 = 0.01 ; a22 = d ; a42 = 0.01 ; e = 1.0 ;
a23 = 0.01 ; a24 = 0.01 ; a31 = 0.01 ; a32 = 0.01 ; a33 = d ; a34 = 0.01 ; a43 = 0.01 ;
while (e > eps) {

vx = a11 * v1 + a12 * v2 + a13 * v3 + a14 * v4 ;
vy = a21 * v1 + a22 * v2 + a23 * v3 + a24 * v4 ;
vz = a31 * v1 + a32 * v2 + a33 * v3 + a34 * v4 ;
vw = a41 * v1 + a42 * v2 + a43 * v3 + a44 * v4 ;
v1 = vx / vw ; v2 = vy / vw ; v3 = vz / vw ; v4 = 1.0 ; e = 1.0 - v1;
if (v1 < 1.0) { e = 1.0 - v1 ;} else { e = v1 - 1.0 ;} }

Fig. 10. Listing of the Initial iterated power method.

By applying the Iterated Power Method, the first intermediary vector is

Ax0 = y1, Ay1/y14 = y2, Ay2/y24 = y3, . . . (20)

To renormalize this intermediary vector, we divide it by the last value d, manner

to have y
(1)
4 equal to 1.0. The new vector is: (0.01/d 0.01/d 0.01/d 1.0)T .

We keep iterating with the new intermediary vector. We have: We repeat the
former operation on this new intermediary vector in order to renormalize it.
By repeating this process several times, the series converges to the eigenvector
(1.0 1.0 1.0 1.0)T .

Our tool has improved the error bounds computed by the semantics of Sec-
tion 2 of up to 25.76%. The optimized code is given in Figure 11.

eps = 0.0005 ; d = 175.0 ; v1 = 0.0 ; v2 = 0.0 ; v3 = 0.0 ; v4 = 1.0 ; e = 1.0 ;
while (e > eps) {

vx = ((((0.01 * v4) + (0.01 * v2)) + (0.01 * v3)) + (d * v1)) ;
vy = ((((0.01 * v1) + (0.01 * v4)) + (0.01 * v3)) + (d * v2)) ;
vz = ((((0.01 * v4) + (0.01 * v2)) + (0.01 * v1)) + (d * v3)) ;
vw = ((((0.01 * v2) + (0.01 * v1)) + (0.01 * v3)) + (d * v4)) ;
v1 = (vx / vw) ; v2 = (vy / vw) ; v3 = (vz / vw) ; v4 = 1.0 ; e = (1.0 - v1) ;
if (v1 < 1.0) { e = 1.0 - v1 ;} else { e = v1 - 1.0 ;} }

Fig. 11. Listing of the optimized iterated power method.

When running this program, we observe significant improved results. In other
words, the transformed implementation succeeds to reduce the numbers of iter-
ations needed to converge and accelerates the convergence speed of the iterative
power method. The experimental results are summarized in Figure 12.

3.4 Iterative Gram-Schmidt Method

The Gram-Schmidt method is used to orthogonalize a set of non-zero vectors
in a Euclidean or Hermitian space Rn. This method takes as input a linear
independent set of vectors Q = {q1,q2, . . . ,qj}. The output is the orthogonal
set of vectors Q’ = {q’1,q’2, . . . ,q’j}, with 1 ≤ j ≤ n [1, 10, 13]. The process
followed by Gram-Schmidt method starts by defining the projection:

projq’(q) =
〈q,q’〉
〈q’,q’〉q’. (21)
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Fig. 12. Difference between numbers of iterations of initial and optimized Iterated
Power Method (tests done for d ∈ [175, 200] with a step of 1).

In Equation (21), 〈q,q’〉 is the dot product of the vectors q and q’. It means that
the vector q is projected orthogonally onto the line spanned by the vector q’.

The normalized vectors are ej =
q’j
||q’j || where ||q’j || consists of the norm of the

vector q’j . Explicitly, Gram-Schmidt process can be written as:

q’1 = q1,

q’2 = q2 − projq’1(q2),

...

q’j = qj −
j−1∑
j=1

projq’j (qj).

In general, Gram-Schmidt method is numerically stable and it is not nec-
essary to use an iterative algorithm. However, important numerical errors may
arise when the vectors become more and more linearly dependent. In this case
iterative algorithms yield better results, as for example the algorithm of Fig-

ure 13 which repeats the orthogonalization step until the ratio
||q’j ||2
||qj ||2 becomes

large enough [13]. First, it starts by computing the orthogonal projection of
span

(
{q1,q2,q3}

)
. Then, it substracts this projection from the original vec-

tor and then normalizes the result to obtain q3, i.e., span
(
{q1,q2,q3}

)
=

span
(
{x1,x2,x3}

)
and q3 is orthogonal to q1, q2. We assume that rjj > 0.

To understand how this algorithm works, let us take for example a set of
vectors in R3 that we aim at orthogonalizing.

Qn =

q1 =

1/7n
0
0

 ,q2 =

 0
1/25n

0

 ,q3 =

1/2592
1/2601
1/2583

 . (22)
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Q11 = 1.0 / 7n ; Q12 = 0.0 ; Q13 = 0.0 ; Q21 = 0.0 ; Q22 = 1.0 / 25n ; Q23 = 0.0 ;
Q31 = 1.0 / 2592.0 ; Q32 = 1.0 / 2601.0 ; Q33 = 1.0 / 2583.0 ; eps = 0.000005 ;
qj1 = Q31; qj2 = Q32; qj3 = Q33; r1 = 0.0; r2 = 0.0; r3 = 0.0; e = 10.0 ;
r = qj1 * qj1 + qj2 * qj2 + qj3 * qj3 ; rold = sqrt(r) ;
while( e > eps) {

h1 = Q11 * qj1 + Q21 * qj2 + Q31 * qj3 ;
h2 = Q12 * qj1 + Q22 * qj2 + Q32 * qj3 ;
h3 = Q13 * qj1 + Q23 * qj2 + Q33 * qj3 ;
qj1 = qj1 - (Q11 * h1 + Q12 * h2 + Q13 * h3) ;
qj2 = qj2 - (Q21 * h1 + Q22 * h2 + Q23 * h3) ;
qj3 = qj3 - (Q31 * h1 + Q32 * h2 + Q33 * h3) ;
r1 = r1 + h1 ; r2 = r2 + h2 ; r3 = r3 + h3 ;
r = qj1 * qj1 + qj2 * qj2 + qj3 * qj3 ;
rjj = sqrt(r);
e = 1.0 - (rjj / rold) ;
if (e < 0.0) { e = -e ; };
rold = rjj ; }

Fig. 13. Listing of the initial iterative Gram-Schmidt program.

Q11 = 1.0 / 7n ; Q12 = 0.0 ; Q13 = 0.0 ; Q21 = 0.0 ; Q22 = 1.0 / 25n ; Q23 = 0.0 ;
Q31 = 1.0 / 2592.0 ; Q32 = 1.0 / 2601.0 ; Q33 = 1.0 / 2583.0 ; eps = 0.000005 ;
qj1 = Q31; qj2 = Q32; qj3 = Q33; r1 = 0.0; r2 = 0.0; r3 = 0.0; e = 10.0 ;
r = qj1 * qj1 + qj2 * qj2 + qj3 * qj3 ; rold = sqrt(r) ;
while ( e > eps) {

TMP_6 = (qj1 * qj3) ;
TMP_14 = (qj2 * qj3) ;
qj1 = (qj1 - ((0.14285714285 *(((qj1 * qj3)) + (0.14285714285 * qj1))));
qj2 = (qj2 - ((0.04 * (((0.0 * qj1) + (qj2 * qj3)) + (0.04 * qj2))))) ;
qj3 = (qj3 - (((qj2 * ((TMP_14) + (0.04 * qj2))) + (qj3 + (qj3 * qj3))))

+ (qj1 * (((qj1 * qj3)) + (0.14285714285 * qj1))))) ;
r1 = (r1 + ((TMP_6) + (0.14285714285 * qj1))) ;
r2 = (r2 + ((TMP_14) + (0.04 * qj2))) ;
r3 = (r3 + ((qj3 * qj3))) ;
r = qj1 * qj1 + qj2 * qj2 + qj3 * qj3 ;
rjj = sqrt(r);
e = 1.0 - (rjj / rold) ;
if (e < 0.0) { e = -e ; };
rold = rjj ; }

Fig. 14. Listing of the optimized iterative Gram-Schmidt program.

For our experiments, we have chosen the values of n ranging from 1 to 10.
In Figure 14, we give the transformed iterative Gram-Schmidt algorithm

generated by our tool. By applying our techniques to the iterative Gram-Schmidt
algorithm presented previously in Figure 13, we show in Figure 15 that the
transformed algorithm converges faster than the initial one by up to 14.5%.

3.5 Performance Analysis

We have shown in the former sections that we optimize the number of iterations
of our four iterative numerical algorithms. In this section, we provide comple-
mentary benchmarks concerning speedups and the number of floating-point op-
erations. Our objective is to check that the gains in the number of iterations are
not annealed by overheads in the execution time of a single iteration or by other
side effects for example due to the compiler.
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Fig. 15. Iterations number of initial and optimized iterative Gram-Schmidt Method
for the family (Qn)n of vectors, 1 ≤ n ≤ 10.

We have chosen to observe the speedups of x4 for Jacobi’s method, and x0 = 3
for Newton-Raphson’s method. We have taken d = 200 for the iterated power
method and q11 = 1

63 and q22 = 1
225 for iterative Gram-Schmidt method.

If we focus on measuring the execution time of the four programs before
and after optimization, we observe that the percentage of improvement is rather
important. If we take for example Jacobi’s method, we remark that we reduce its
execution time by 74.5%. We give in Figure 16 the speedups results obtained for
the four methods. These results are very interesting to emphasize the usefulness
of our tool and its ability to improve accuracy and execution time simultaneously.

We have also counted the number of floating-point operations (flops) in the
original and optimized codes. The numbers are given in Figure 17. For each
method, we count the number of additions and subtractions as well as the number
of products and divisions for a single iteration and for the total number of
iterations required in each case to converge. These results are coherent with the
observed execution times.

Original Code Optimized Code Percentage Mean
Execution Time in s Execution Time in s Improvement on n Runs

Jacobi 1.49 · 10−4 0.38 · 10−4 74.5% 104

Newton 1.34 · 10−3 0.02 · 10−3 98.4% 104

Eigenvalue 4.50 · 10−2 3.07 · 10−2 31.6% 103

Gram-Schmidt 1.99 · 10−1 1.70 · 10−1 14.5% 102

Fig. 16. Execution time measurements of programs of Section 3.
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] of ± per it ] of ± per it Total ] of ± Total ] of ± opt Percentage of
Method Original Code Optimized Code Original Code Optimized Code Improvement

Jacobi 13 15 25389 24420 3.81
Newton-Raphson 11 11 3465 132 96.19

Eigenvalue 15 15 694080 685995 1.16
Gram-Schmidt 21 19 791364 715996 9.52

] of × per it ] of × per it Total ] of × Total ] of × opt Percentage of
Method Original Code Optimized Code Original Code Optimized Code Improvement

Jacobi 28 14 54684 22792 58.32
Newton-Raphson 27 26 8505 312 96.33

Eigenvalue 19 19 879168 868927 1.16
Gram-Schmidt 22 20 712316 647560 9.09

Fig. 17. Floating-point operations needed by programs of Section 3 to converge.

4 Conclusion

This article focuses on the impact of automatic transformation of programs in
order to improve their numerical accuracy on the convergence time of numerical
iterative algorithms. Our experiments show the usefulness of our approach on the
time required by numerical iterative methods to converge. We have experimented
several representative numerical iterative methods by giving them to our tool
and we have shown that the transformed programs converge more quickly than
the original ones without loss of accuracy. We have extended this study with
complementary results concerning the execution time and the total number of
floating-point operations.

What remains to be done is to have a more complete tool implementing
other programming language patterns like functions and pointers. In addition,
it would be interesting to extend the current work with a case study concerning
a real size numerical application. The study described in [9] is a first step in this
direction. Another future work would consist in studying the impact of accuracy
optimization on the convergence time of distributed numerical algorithms like
the ones used usually for high performance computing. In addition, still about
distributed systems, an important issue concerns the reproductability of the
results: different runs of the same application yield different results due to the
variations in the order of evaluation of the mathematical expression. We would
like to study how our technique could improve reproductability.
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