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Abstract This article introduces some techniques to estimate and to improve the

numerical quality of computations performed using different computer arithmetics. A

general methodology is introduced and it is applied to the fixed-point and floating-

point formats. We show how to globally measure the quality of the implementation

of a formula with respect to some quality indicators. In the case of the floating-point

arithmetic, the indicator measures the distance between the computer and exact results

in the worst case. In the case of the fixed-point arithmetic, the indicator bounds the

number of digits needed to represent all the intermediary results. Next, we show how

the operations which make mostly decrease the quality of an indicator can be identified.

This information helps the programmer to improve the implementation by underlying

the main sources of degradation. Finally, we introduce a fully automatic expression

transformation technique to rewrite a formula into a better, mathematically equivalent

one. The new formula is more accurate than the original one with respect to the chosen

quality indicator.

Keywords Numerical precision, Static Analysis, Abstract Interpretation, Program

Transformation.

1 Introduction

In general, the computations carried out on machines are approximative because of

the finite representation of numbers. Then an obvious question is how to estimate the

quality of a certain implementation of a formula and how to enhance it. For example,

one may wish to measure the absolute or relative precision of the result of a sequence

of operations, assuming ranges for the inputs and assuming that the operations are

performed in the floating-point arithmetic described by the IEEE754 Standard [1]. If a
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fixed-point arithmetic is used, one may rather aim at minimizing the number of digits

required to reach a given precision. these problems have many industrial applications:

floating-point numbers are more and more used in safety-critical software [6] and fixed-

point numbers are widely used in many, critical or not, embedded systems (from cellular

phones to vehicles).

Understanding the reasons why the implementation of a formula is numerically bad

and how to improve it is usually difficult because computer arithmetics are particularly

not intuitive. For example, in floating-point arithmetic, the elementary operations (e.g.

addition, multiplication. . .) are not associative, invertible, distributive, etc. [7,18]. So,

it is necessary to provide tools to the programmers, in order to help them to increase

the numerical quality of their codes. During the last few years, static analyses by ab-

stract interpretation [3] of the numerical accuracy of floating-point computations have

been introduced [8,14,16] and implemented in the Fluctuat tool [9,10] which is used

in many industrial contexts. A main advantage of this method is that it enables one to

bound safely all the errors arising during a computation, for large ranges of inputs. It

also provides hints on the sources of errors, that is on the operations which introduce

the most important precision loss. This latter information is of great interest to im-

prove the accuracy of the implementation. Other methods, not based on static analysis,

are compared in [15]. semantics-based program transformation [4,12] for floating-point

arithmetic expressions has been introduced [17]. This method enables one to automat-

ically rewrite a general formula into another mathematically equivalent and more pre-

cise formula. In this area, there only exists improvement methods dedicated to specific

classes of formulas, for example to improve the evaluation of polynomial expressions

[2,13].

Regardless of the arithmetic used, tools are necessary to help the programmers

to determine which operations reduce the quality of an implementation and how to

improve it. This is the main purpose of this article: we consider computer arithmetics

extended by quality indicators. The largest the indicator is, the worst the implementa-

tion is. Then we show how to detect automatically which operations mainly contribute

to make the indicators grow and how to rewrite an expression into a more efficient one

with respect to the chosen indicator. Detecting the places where quality is lost is a

generalisation of the work on error series introduced to assert the accuracy of floating-

point expressions [16,9]. The enhancement of the implementation is a generalisation of

the semantics-based transformation of [17]. We apply our framework to two different

arithmetics: the floating-point arithmetic and the fixed-point arithmetic. In the former

case, the indicator concerns the precision of the computation. In the latter case, the

indicator concerns the number of digits required to perform an exact computation.

This article is organised as follows. Section 2 briefly introduces the floating-point

and fixed-point arithmetics. In Section 3, we introduce an abstract semantics which

computes the indicators used to estimate the quality of a formula. Section 4 introduces

more subtle abstract semantics to detect the operations which lower the quality of an

implementation. Finally, in Section 5, we introduce a semantics-based transformation

which makes it possible to automatically rewrite formulas into more efficient ones. All

these methods are applied to the floating-point and fixed-point arithmetics. Section 6

concludes.
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2 Computer Arithmetics

This section briefly surveys the aspects of floating-point and fixed-point arithmetics

useful to the comprehension of the rest of this article. It also defines the quality indi-

cators that we aim at improving for each format.

sign

e0 eq-1 d0 dp-1

exponent mantissa

s

d0 d-n

sign integer part fractional part

s d-1
dm-1

Floating-Point Format

Fixed-Point Format

Fig. 1 Representation of the floating-point and fixed-point formats.

2.1 Floating-Point Arithmetic and the IEEE754 Standard

The IEEE754 Standard specifies the representation of numbers and the semantics of

the elementary operations for floating-point arithmetic [1,7]. It is implemented in most

of modern general-purpose processors. First of all, a floating-point number x in base β

is defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (1)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the mantissa with digits 0 ≤ di < β,

0 ≤ i ≤ p−1, p is the precision and e is the exponent, emin ≤ e ≤ emax (see Figure 1). A

floating-point number x is normalized whenever d0 6= 0. Normalization avoids multiple

representations of the same number. IEEE754 Standard introduces a few values for p,

emin and emax. For example, simple precision numbers are defined by β = 2, p = 23,

emin = −126 and emax = +127. The IEEE754 Standard also specifies special values

(denormalized numbers, infinites and NaN) which are not used in this article.

Let ↑◦ : R → F be the function which returns the roundoff of a real number fol-

lowing the rounding mode ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼} (towards ±∞, 0 or to the nearest).

↑◦ is fully specified by the IEE754 Standard which also requires, for any elementary

operation ♦, that:

x1 ♦F,◦ x2 = ↑◦ (x1 ♦R x2) (2)

Equation (2) states that the result of an operation between floating-point numbers

is the roundoff of the exact result of this operation. In this article, we also use the

function ↓◦: R→ R which returns the roundoff error. We have:

↓◦ (r) = r− ↑◦ (r) (3)
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In floating-point arithmetic, enhancing the quality of the implementation of a formula

f(x) then consists of minimizing the roundoff error on the result. In other words, using

the notation of Equation (3), we aim at minimizing ↓◦ (f(x)), for all the possible

vectors of inputs x.

2.2 Fixed-Point Arithmetic

There is no general standard for fixed-point arithmetic comparable to the IEEE754

Standard. Following [19,20], we consider that a number x is written:

x = s · (dm−1 . . . d0.d−1 . . . d−n) = s ·
m−1X
i=−n

diβ
i (4)

In Equation (4), x is a number made of m + n digits. The m first digits represent

the integer part while the n last digits represent the fractional part (see Figure 1).

s ∈ {−1, 1} is the sign of x. For the basis, we always assume that β = 2. In addition,

for the sake of simplicity and without lost of generality, we do not consider numbers

encoded in the two’s complement format which is also common in the implementations

of fixed-point arithmetic. As argued in the next paragraph, we assume that no overflow

arises and that, whenever it is necessary, the results of elementary operations are

truncated (rounding mode towards zero).

Slightly different problems may be formulated concerning the enhancement of the

implementation of a formula in fixed-point arithmetic. Following [19,20], in this article,

we are interested in minimizing the m parameter of Equation (4), that is in finding

the minimal size for the integer part of numbers such that no overflow arise during the

computation, for all the acceptable inputs. So, we introduce the function

←◦ (x) = min
˘
m ∈ N : bxc ≤ βm¯

(5)

where bxc denotes the integer part of x. Implicitly, we consider that in the final im-

plementation all the values are encoded in the same format (the one for which we

determine m). This is usually the case when the program is targeted for a general

purpose processor: the designer wants to know, for example, if 16 bits are enough to

perform the computation or if all the data must be encoded in a 32 bits format. For

more specific processing units (e.g. FPGAs), one may wish to minimize the size of

the circuit by using numbers of different formats (e.g. to use less bits when the values

are smaller). In this case, the way we compute the quality indicators for a fixed-point

implementation should be slightly modified.

3 Measuring the Quality of an Implementation

In this section, we introduce two semantics for the arithmetic expressions whose syntax

is given by:

e ::= v | e1 + e2 | e1 − e2 | e1 × e2 (6)

These semantics are related to our two quality indicators (see Section 2). In both cases,

a value is a pair (x, µ) where x denotes the computer number, i.e. a fixed-point or a

floating-point number, and µ measures the quality of x. In our case, µ will denote
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either the number of digits needed to encode the integer part of x in the fixed-point

format (parameter m of Equation (4)) or the distance between a real number xR
and the floating-point number x corresponding to the roundoff of xR (i.e. ↓◦ (xR) as

defined in Equation (3)). In addition, we consider a left-to-right evaluation order for

the expression, as given by the straightforward reduction rules of Figure 2.

v = v1 + v2

v1 + v2 → v

e1 → e′1
e1 + e2 → e′1 + e2

e2 → e′2
v1 + e2 → v1 + e′2

v = v1 × v2

v1 × v2 → v

e1 → e′1
e1 × e2 → e′1 × e2

e2 → e′2
v1 × e2 → v1 × e′2

Fig. 2 Operational semantics of arithmetic expressions.

In the rest of this article, we consider abstract values (x], µ]) where x] and µ]

are intervals. A value (x], µ]) abstracts a set of concrete values {(xi, µi), i ∈ I} by

intervals in a component-wise way. The reduction rules of Figure 2 are left unchanged

for the abstract semantics.

(x]
1, µ]

1) + (x]
2, µ]

2) =
“
↑]◦ (x]

1 + x]
2), µ]

1 + µ]
2+ ↓]◦ (x]

1 + x]
2)

”
(7)

(x]
1, µ]

1)− (x]
2, µ]

2) =
“
↑]◦ (x]

1 − x]
2), µ]

1 − µ]
2+ ↓]◦ (x]

1 − x]
2)

”
(8)

(x]
1, µ]

1)× (x]
2, µ]

2) =
“
↑]◦ (x]

1 × x]
2), x]

1 × µ]
2 + x]

2 × µ]
1 + µ]

1 × µ]
2+ ↓]◦ (x]

1 × x]
2)

”
(9)

Fig. 3 Abstract semantics of the elementary operations for the floating-point arithmetic.

The abstract semantics of arithmetic operations are given in Figure 3 and in Figure

4 for the floating-point and fixed-point arithmetics, respectively. In the floating-point

case (Figure 3), we compute how the roundoff errors are propagated. ↓]◦ is a safe

abstraction of ↓◦, i.e. ∀x ∈ [x, x], ↓◦ (x) ∈ ↓]◦ ([x, x]). For example, if the current

rounding mode ◦ is to the nearest, one may choose

↓]◦ ([x, x]) = [−y, y] with y =
1

2
ulp

`
max(|x|, |x|)

´
(10)

where the unit in the last place ulp(x) is the weight of the least significant digit of

the floating-point number x [7]. For an addition, the errors on the operands are added

to the error due to the roundoff of the result, as specified by Equation (2). For a

subtraction, the errors on the operands are subtracted. Finally, the semantics of the

multiplication comes from the development of (x]
1 + µ]

1)× (x]
2 + µ]

2).

In the fixed-point case (Figure 4), the measure µ] indicates the maximal number

of bits needed to encode a value somewhere in the computation. In this case, we do

not need an interval for µ] since we only store the greatest value. So, in the fixed-

point abstract semantics µ] is an integer. To compute µ], we take the maximum of the

measures µ]
1 and µ]

2 on the operands and of the measure←]
◦ (x]) on the result x] of an

operation, where ←]
◦ (x) stands for a safe abstraction of ←◦ (x), i.e. ∀x ∈ [x, x], ←◦

(x) ∈ ←]
◦ ([x, x]).
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(x]
1, µ]

1) + (x]
2, µ]

2) =
“
x]
1 + x]

2, max(µ]
1, µ]

2,←]
◦ (x]

1 + x]
2))

”
(11)

(x]
1, µ]

1)− (x]
2, µ]

2) =
“
x]
1 − x]

2, max(µ]
1, µ]

2,←]
◦ (x]

1 − x]
2))

”
(12)

(x]
1, µ]

1)× (x]
2, µ]

2) =
“
x]
1 × x]

2, max(µ]
1, µ]

2,←]
◦ (x]

1 × x]
2))

”
(13)

Fig. 4 Abstract semantics of the elementary operations for the fixed-point arithmetic.

We end this section by considering the following example: Let

E = (a + (b + (c + d)))× e (14)

and let us assume that the variables belong to the ranges:

a ∈ [−14,−13] b ∈ [−3,−2]

c ∈ [3, 3.5] d ∈ [12.5, 13.5] e = 2
(15)

Using the semantics of Figure 3 and Figure 4, we obtain the following results:

– Floating-point arithmetic:

Efloat =
`
[−3, 4], [−2.861022949 · 10−6, 0]

´
This value indicates that the result returned by the machine always belongs to the

interval [−3, 4] and that, for any combination of inputs taken in the correct ranges,

the roundoff error on the result is always less than 2.861022949 · 10−6 in absolute

value.

– Fixed-point arithmetic:

Efixed =
`
[−3, 4], 5

´
Just like in the previous case, this value states that the result returned by the

machine always belongs to the interval [−3, 4]. In addition, it states that 5 bits

may be needed for the integer part, somewhere in the computation. Note that only

3 bits are required for the integer part of the result. However, for instance, if c= 3.5

and d= 13.5 then c+d= 17 and ←◦ (17) = 5.

Given a value (x], µ]), the indicator µ] measures the quality of the implementation

of a formula in floating-point or fixed-point arithmetics, assuming that the inputs

belong to certain ranges. In the next sections we introduce some techniques enabling

the programmer to improve these indicators.

4 Semi-Automatic Improvement of the Quality

In this section, we introduce new semantics to trace the operations of a formula which

mostly lower the quality of an implementation. This generalizes the semantics of Section

3 which computes the indicator µ but do not indicate how it is obtained. The semantics

introduced here are said semi-automatic since they detect the places where the quality

is lost. This is an important help for the programmer who aims at improving a code.

However this is not a fully automatic method in the sense that no solution is given

concerning how to enhance the quality of the implementation.
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The semantics introduced here were first introduced for the floating-point arith-

metic under the name of error series semantics [8,14]. First of all, in order to trace the

sources of quality loss, labels are attached to the terms. A labeled expression e` is then

defined by:

e` ::= v` | e`1
1 +` e`2

2 | e
`1
1 −

` e`2
2 | e

`1
1 ×

` e`2
2 (16)

We introduce now the values of the semantics of indicator series. A value xS is a pair

xS =
`
x, 〈µ`1 , . . . , µ`n

, µ~〉
´

(17)

where x denotes the computer representation of the number xS and the tuple 〈µ`1 , . . . ,

µ`n
, µ~〉 has one component per label `1, . . . , `n used in the expressions plus one com-

ponent reserved for a special label ~ used for the higher-order terms introduced by

non-linear computations.

x]
S +`k y]

S
=“

↑◦ (x] + y]),
D
µ]

`1
+ ν]

`1
, . . . , µ]

`k
+ ν]

`k
+ ↓]◦ (x] + y]), . . . , µ]

`n
+ ν]

`n
, µ]

~ + ν]
~

E” (18)

x]
S −

`k y]
S

=“
↑◦ (x] − y]),

D
µ]

`1
− ν]

`1
, . . . , µ]

`k
− ν]

`k
+ ↓◦ ](x] − y]), . . . , µ]

`n
− ν]

`n
, µ]

~ − ν]
~

E” (19)

x]
S ×

`k y]
S =

`
↑◦ (x] × y]),

˙
x]ν]

`1
+ y]µ]

`1
, . . . ,

x]ν]
`k

+ y]µ]
`k

+ ↓]◦ (x] × y]), . . . ,

x]ν]
`n

+ y]µ]
`n

, µ]
~ν]

~ +
Pn

i=1

“Pn
j=1 µ]

`i
ν]

`j

” ¸´ (20)

Fig. 5 Abstract semantics of elementary operations for the indicator series in the floating-
point arithmetic.

Intuitively, in the case of the floating-point arithmetic, in the tuple of Equation

(17), the term µ`k
represents the contribution to the global error computed by the

semantics of Section 3 of the error introduced by the control point `k. So, in the

concrete semantics, we may relate the measure µ to Equation (17) by the property:

µ = µ~ +

nX
i=1

µ`i
(21)

In other words, the error µ has been decomposed in a series or error terms which

indicate to the programmer which elementary error has been mostly propagated in the

computation and contributes mostly to the global error. The semantics of elementary

operations is given Figure 5 for the floating-point arithmetic. The operands

x]
S = 〈x], µ]

`1
, . . . , µ]

`n
, µ]

~〉

and

y]
S = 〈y], ν]

`1
, . . . , ν]

`n
, ν]

~〉

are tuples of intervals representing abstract values. For an addition carried out at Label

`k, the computer representable result ↑]◦ (x] + y]) is calculated and the indicator of
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each label is updated as follows: the new error related to a label ` 6= `k is the sum of

the errors related to ` in the operands, i.e. µ]
` + ν]

` . Next, the new error attached to `k

is the sum of the errors on the operands plus the new error due to the addition labeled

`k itself. The subtraction is very similar to the addition. For a product labeled `k, for

each label ` 6= `k we compute the propagation of the errors due to ` in the operands

which yields x]ν]
` + y]µ]

`. For Label `k, the new error ↓]◦ (x] × y]) introduced by the

product is added to the former term.

x]
S +`k y]

S =
`
x] + y],

˙
max(µ]

`1
, ν]

`1
), . . . ,

max
`
µ]

`k
, ν]

`k
,←]

◦ (x] + y])
´
, . . . , max(µ]

`n
, ν]

`n
)
¸´ (22)

x]
S −

`k y]
S =

`
x] − y],

˙
max(µ]

`1
, ν]

`1
), . . . ,

max
`
µ]

`k
, ν]

`k
,←]

◦ (x] − y])
´
, . . . , max(µ]

`n
, ν]

`n
)
¸´ (23)

x]
S ×

`k y]
S =

`
x] × y],

˙
max(µ]

`1
, ν]

`1
), . . . ,

max
`
µ]

`k
, ν]

`k
,←]

◦ (x] × y])
´
, . . . , max(µ]

`n
, ν]

`n
)
¸´ (24)

Fig. 6 Abstract semantics of the elementary operations for the indicator series in the fixed-
point arithmetic.

For the fixed-point arithmetic, the terms µ`1 . . . µ`n
of the tuple of Equation (17)

are integers which indicate how many bits are needed to compute the integer part of

the sub-expression of root `i for any i, 1 ≤ i ≤ n. Here, the higher-order term µ~ is

always zero and we omit it in the formulas. The information collected by this semantics

directly shows to the programmer which parts of a formula make the integer part of

the fixed-point format grow. Again, this is useful to modify the implementation of the

formula but this technique do not indicate how to achieve the enhancement.

The abstract semantics for the indicator series in fixed-point arithmetic is given

in Figure 6. Basically, for an operation labeled `k, the size of the integer part is the

maximum of the size of the operands and of the result. The other terms of the tuple are

updated by keeping the maximum of the operands. As a result, the final tuple indicates

the size of the integer parts of all the sub-expressions.

For example, we consider that the following labels are attached to the operations

of the expression of Equation (14):

E` = (a +`2 (b +`1 (c +`0 d)))×`3 e

Since we assume that there is no initial error on the data, the labels on the values a,

b, c, d and e are useless. The abstract indicator series semantics gives the following

results.

– Floating-point arithmetic:

E`
float =

`
[−3, 4],

˙
[−1.90734863281250 · 10−6, 1.90734863281250 · 10−6],

[−9.53674316406250 · 10−7, 9.53674316406250 · 10−7],

[−2.38418579101562 · 10−7, 2.38418579101563 · 10−7],

[−2.38418579101562 · 10−7, 2.38418579101563 · 10−7]
¸´ (25)

The errors can be represented by an histogram, as shown in Figure 7. The labels

`0 . . . `n are displayed on the x-axis and the measures are given by the y-axis. We
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Fig. 7 Histogram for the indicator series of Equation (25): floating-point arithmetic.

can observe that the main errors are due to the first two additions labeled `0 and

`1. In the floating-point format, c and d do not have the same exponent (in base 2

and their addition introduces an important roundoff error. The same phenomena

arises at Point `1 but for smaller values. Clearly, in order to enhance the accuracy

of this computation, the programmer should avoid to add c and d. In Section 5, we

will introduce a way to transform this expression into a more precise one.

– Fixed arithmetic:

E`
fixed =

`
[−3, 4],

˙
5, 4, 2, 3

¸´
(26)

E′`
fixed =

`
[−3, 4],

˙
5, 5, 5, 5

¸´
(27)

Here, two series are relevant. They are drawn in the histogram of Figure 8. The

series of Equation (27) is based on the semantics of Figure 6. In Equation (26),

the terms max
`
µ]

`k
, ν]

`k
,←]

◦ (x] × y])
´

of equations (22) to (24) are replaced by

←]
◦ (x] × y]). The observation of these series reveals that the computation must

be carried out using 5 bits because of the result of the addition labeled `0. The

other operations would require less bits. A better implementation of this formula

in fixed-point arithmetic is given in Section 5.

5 Fully Automatic Improvement of the Quality

As discussed in Section 4, the indicator series provide information on where the quality

is lost but no way to enhance the implementation is given. In this section, we introduce a

program transformation which rewrites programs into more accurate ones with respect

to a given quality indicator. In practice, we are going to apply this technique to the

improvement of the precision of floating-point expressions and to the reduction of the

size of the integer part of fixed-point numbers.
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Fig. 8 Histogram for the indicator series of Equation (26) and Equation (27): fixed-point
arithmetic.

(i) (e1 + e2) + e3 ≡ e1 + (e2 + e3)
(ii) e1 + e2 ≡ e2 + e1

(iii) e ≡ e + 0
(iv) (e1 × e2)× e3 ≡ e1 × (e2 × e3)
(v) e1 × e2 ≡ e2 × e1

(vi) e ≡ e× 1
(vii) e1 × (e2 + e3) ≡ e1 × e2 + e1 × e3

Fig. 9 Example of equivalence relation which may be used for the transformation of mathe-
matic expressions.

Basically, the program transformation works as follows:

(i) The operational semantics of Figure 3 is extended by the rule:

e ≡ e1 e1 → e2 e2 ≡ e′

e→ e′
(28)

where ≡ is an relation which identifies mathematically equivalent expressions. For

example, ≡ may identify expressions which are equal up to associativity, symme-

try and distributivity of the elementary operations (see Figure 9). Since there are

usually many expressions e′ equivalent to an expression e, the rule of Equation

(28) makes the operational semantics non-deterministic, in the sense that from an

expression e, many steps e→ e′ are possible, for syntactically different e′.
(ii) To limit the combinatorial explosion of the number of traces due to the rule of

Equation (28), we introduce the set Expr]k of abstract expressions of height at

most k and the abstraction function p.qk : Expr → Expr]. From a formal point

of view, Expr] and p.qk are defined in Figure 10. >η denotes any expression. Note

that, in abstract expressions, labels are attached to values (and only values). In
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the abstract semantics, a new label, generated dynamically, is attached to the new

values coming from the result of intermediary computations.

(iii) We extend the operational semantics by adding two environments to the expres-

sions: a first environment ρ] : Lab→ ℘(Expr]) maps the labels attached to values

to abstract expressions. This indicates how the value has been calculated. The sec-

ond environment σ] : Expr] → V] maps abstract expressions to abstract values

with global quality indicators, as defined in Section 3. The set V] denotes either

the abstract domain of floating-point numbers or fixed-point numbers with global

quality indicator. σ(η) indicates the range of values in which are evaluated the

expressions abstracted by η and encountered during the execution.

(iv) Finally, the program transformation consists of computing fully the abstract seman-

tics. This semantics is non-deterministic because of (i) but the abstract expressions

discussed in (ii) make the number of reductions polynomial. Using the information

collected by the environments described in (iii), the result of each trace has a

quality indicator. From the best quality indicator we can build a new expression,

mathematically equivalent to the original one, by following actions attached to the

reductions. These actions indicates which operation has actually been performed

at each reduction step.

η0 ::= v]` | >η

ηk ::= ηk−1 | ηk−1 + ηk−1 | ηk−1 × ηk−1

pv`qk = v` k ≥ 0
p>ηqk = >η k ≥ 0

pe1 + e2q0 = >η

pe1 × e2q0 = >η

pe1 + e2qk = pe1qk−1 + pe2qk−1 k ≥ 1
pe1 × e2qk = pe1qk−1 × pe2qk−1 k ≥ 1

Fig. 10 Abstract expressions and the abstraction function.

The abstract semantics resulting from the ideas detailed in the enumeration above is

given in Figure 11. Its correctness is given, in the case of the floating-point arithmetic,

in [17]. In Figure 11, ♦ denotes one of the elementary operations +, − or × and

σ] ∧ [η 7→ ν] denotes the environment σ] modified by σ](η) = ν. In a transition

(ρ], σ], e)
A−→k (ρ′], σ′], e′)

k denotes the user-defined parameter corresponding to the level where abstract ex-

pressions are cut and A is an action indicating which arithmetic operation has been

performed at this step. Actions are used to rebuild a new expression from a trace. The

relation ≡k is the quotient ≡ / ∼k where ∼k is defined by

e ∼k e′ ⇐⇒ peqk = pe′qk.

The transformation τk is based on the minimal abstract trace e
A−→

∗
k v], i.e. the

trace which yields the minimal abstract indicator v]. Because the semantics
A−→k allows

more steps than the concrete semantics→ (in→ an expression may not be transformed
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v] =
S

η1 ∈ ρ](`1)

η2 ∈ ρ](`2)

`
σ](η1)♦]σ](η2)

´
E =

S
η1 ∈ ρ](`1)

η2 ∈ ρ](`2)

pη1♦η2qk σ]′ = σ]
V

η1 ∈ ρ](`1), η2 ∈ ρ](`2)

η = pη1♦η2qk

ν = σ](η1)♦σ](η2)

[η 7→ σ](η) ∪ ν]

〈ρ], σ], v`0
0 ♦v`1

1 〉 `=`1♦`2−−−−−−→ k
〈ρ][` 7→ ρ](`) ∪ E], σ]′, v`〉

(29)

〈ρ], σ], e0〉
A−→k 〈ρ]′, σ]′, e2〉

〈ρ], σ], e0♦e1〉
A−→k 〈ρ]′, σ]′, e2♦e1〉

(30)

e ≡k e1 〈ρ], σ], e1〉
A−→k 〈ρ]′, σ]′, e2〉 e2 ≡k e3

〈ρ], σ], e0〉
A−→k 〈ρ]′, σ]′, e3〉

(31)

Fig. 11 The abstract semantics.

by ≡k), we cannot directly transform a trace of
A−→k into a trace of →: we first have

to rebuild the totally parsed expression which has actually been evaluated by
A−→k.

This is achieved by using the actions A appearing in the transitions of the abstract

semantics and which collect the operations actually performed along the traces.

Actions are expressions of the form ` = `1 + `2 or ` = `1 × `2, where `, `1 and `2
are labels belonging to Lab and attached to values. For example, an action ` = `1 + `2
indicates that the value of label ` is the addition of the expressions of labels `1 and `2.

P
“
〈ρ], σ], e〉 `=`1+`2−−−−−−→ k

〈ρ]′, σ]′, e′〉, ι
”

= ι[` 7→ ι(`1) + ι(`2)] (32)

P
“
〈ρ], σ], e〉 `=`1♦`2−−−−−−→ k

〈ρ]′, σ]′, e′〉, ι
”

= ι[` 7→ `1 × `2] (33)

P
“
〈ρ], σ], v]`〉, ι

”
= ι(`) (34)

P
“
s1

A−→k s2
A−→k . . . sn, ι

”
= P

“
s2

A−→k . . . sn, P(s1
A−→k s2)

”
(35)

Fig. 12 Generation of the new expression.

The expression generation function P is defined in Figure 12. P takes a trace,

an environment ι : Lab →Expr and computes a new environment ι′. For a trace

t] = 〈ρ], s], e〉 A−→
∗
k 〈ρ]′, σ]′, v]〉, initially assuming that ι(`) = v for any value v`

occurring in the source expression e, P(t], ι) = ι′(`), where ι′(`) is the expression

actually evaluated by t].

Applied to the expression of Equation (14), our transformation technique yields

the following results:

– Floating-point arithmetic: E is transformed into the new expression

E
′
float = ((a + b)× e) + ((c + d)× e) (36)

and the global quality indicator attached to Efloat is:

Efloat =
`
[−3, 4], [−2.384185791 · 10−6,−1.430511475 · 10−6]

´
(37)
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Remark that, in Efloat, the variables a and b (resp. c and d) added first which does

not correspond to the original parsing. However, since (a+b) ≈ (c+d) this writing

reduces the roundoff errors. In addition the multiplication has been distributed.

This avoids to multiply some of the roundoff errors due to the additions of the

original formula.

– Fixed-point arithmetic:

E
′
fixed = e× ((a + d) + (b + c)) (38)

E′
fixed =

`
[−3, 4], 4

´
(39)

In E′, a and d are added first and the product is not distributed. These choices

make it possible to store all the intermediate values on 4 bits only (in absolute

value, the greatest number arising during the computation is 14).

Note that, while E′float and E′fixed are quite different, they have been obtained automat-

ically, from the same algorithm, based on the relation ≡k. The only difference in the

computation concerns the indicator used to estimate the quality of the formulas. Both

transformations enhance the quality of the implementation with respect to the chosen

indicator.

6 Conclusion

In this article, we have extended recent work on the enhancement of the implementation

of floating-point expressions to the case of fixed-point arithmetic. This is done in a

general framework, where quality indicators are attached to the values manipulated by

the computer. Swapping from one arithmetic to another only involves to change the

quality indicator, the semantics being left unchanged. Our running example enables to

compare the results of all the analyses and transformations. Our approach is not specific

to the arithmetics used in this article and can be used in other cases. For example, we

could also consider the case of interval arithmetic [11]: intervals often yield pessimistic

results because of the wrapping effect and because of the lack of information on the

relations between variables. For example, a direct evaluation of the polynomial

P (x) = x− x2

with x ∈ [0, 1] yields P (x) = [−1, 1]. Using Horner scheme, we obtain P (x) = x(1−x) =

[0, 1]. Finally, the most precise solution is P (x) = [0, 1
4 ]. In our framework, we can define

a new quality indicator corresponding to the width of the interval: in this case, a value

is a pair ([a, b], |b− a|) where [a, b] if an interval value and |b− a| is the indicator. For

example, using the values of Equation (15) for a, b, c, d and setting e= [−2, 2], we

obtain, for the different formulas encountered in this article:

– E = (a + (b + (c + d)))× e: ([−4, 4], 8),

– E′float = ((a + b)× e) + ((c + d)× e): ([−64, 68], 132),

– E′fixed = e× ((a + d) + (b + c)): ([−4, 4], 8).

The quality indicator of the first and third formulas is 8. Obviously, it is better than

the indicator of the second formula which is 132. So, for the interval arithmetic, the

programmer should not implement the formula by E′fixed.
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More generally, we believe that yet other quality indicators could be interesting to

study, for other kinds of fixed-point arithmetics but also, for example, for code obfus-

cation [5], execution-time, memory-consumption, etc. If many indicators are relevant

for the same implementation, then multi-criteria enhancement techniques should also

be explored.

Another research direction concerns the transformation of full programs: the indi-

cator series based abstract semantics is used in industrial contexts, to validate safety-

critical software. In the future, we aim at implementing a program transformer able

to handle large codes. This tool should work both in floating-point and fixed-point

arithmetics since there are many industrial needs in both contexts.
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