
Towards an Abstraction of the Physical

Environment of Embedded Systems

Matthieu Martel

CEA - Recherche Technologique
LIST-DTSI-SOL

CEA F91191 Gif-Sur-Yvette Cedex, France

e-mail : matthieu.martel@cea.fr

1 Introduction

Static analyzers for critical embedded softwares often poorly abstract the phys-
ical environment in which, in practice, the embedded systems are run. To take
an extreme example (more reasonable examples abound in articles dedicated to
hybrid systems [1, 12]), the static analysis of avionic codes should abstract the
plane environment, that is, the engines, the wings, and the atmosphere itself.
This is because embedded software strongly interact with their environment,
picking physical values by means of sensors and modifying them via actuators.
In practice, the sensors correspond to volatile variables in C programs and, at
analysis time, the user assigns to these variables a range given by the minimal
and maximal values the sensor can send. In this case, a static analyzer must
assume that the value sent by the sensor may switch from its minimum to its
maximum in arbitrary short laps of time, while, in practice, it follows a slow
evolution. As a consequence, the results of the static analysis are significantly
over-approximated. The abstraction of the physical environment is even more
crucial for embedded systems that cannot be physically tested in their real en-
vironment, like space crafts whose safety only relies on verification tools.

In this article, we introduce preliminary results concerning the abstract inter-
pretation [3] of hybrid discrete-continuous systems. Related work can be found
in [6, 8, 4]. A simple abstraction of sets of continuous functions is presented in
Section 2. This domain is used in Section 3 to perform a simple static analysis.
Finally, future work directions are discussed in Section 4.

2 Abstraction of Continuous Inputs

Continuous inputs usually are modeled by differential equations. Let R+ be the
set of non-negative real numbers and let R = R∪{−∞, +∞}. Let C1

+ denote the

set of continuous piecewise smooth functions R+ → R. C1
+ is partially ordered by

the relation ∀f1, f2 ∈ C1
+, f1≺̇f2 ⇔ ∀t ∈ R+, f1(t) ≤ f2(t). Next, ≺ is defined

by (f1, f2) ≺ (g1, g2) ⇔ g1≺̇f1 ∧ f2≺̇g2. There is a first Galois connection:

T0 = 〈℘(C1
+),⊆,∪,∩,⊤⊆,⊥⊆〉 −−−→←−−−

α0

γ0

〈(C1
+)2⊥,≺,∨,∧,⊤≺,⊥≺〉 = T1 (1)

k,h
α γ

k,h

Fig. 1. Example of the transformations performed by αk,h and γk,h.

where ℘(X) is the powerset of X , ⊤⊆ = C1
+, ⊥⊆ = ∅, (C1

+)2⊥ = (C1
+×C1

+)∪{⊥≺},
⊤≺ = (f⊥

≺̇
: x 7→ −∞, f⊤

≺̇
: x 7→ +∞), f1∨f2 = f such that ∀x ∈ R

+, f(x) =
f1(x) if f1(x) ≥ f2(x) and f(x) = f2(x) otherwise. ∧ is defined in the same way.
Note that for all f1 ∈ C1

+, f2 ∈ C1
+, f1 ∨ f2 ∈ C1

+ and f1 ∧ f2 ∈ C1
+.

α0(X) = (f−, f+) such that ∀x ∈ R+, f−(x) = inf {f(x) : f ∈ X} and
f+(x) = sup {f(x) : f ∈ X}. For all X ⊆ C1

+, α0 computes functions belonging
to C1

+, at least if, in T0, we restrict ourselves to families of functions F for which
{x : ∃f ∈ F, the derivative of f is discontinuous in x} is finite (we believe that
this assumption can be relaxed). γ0(f

−, f+) = {f ∈ C1
+ : f−≺̇f≺̇f+}.

In a static analyzer, the user ought to specify the continuous inputs as values
of T1, i.e. as pairs of functions that the tool will numerically approximate. The
second abstraction, introduced now, defines how safe approximations of sets of
functions should be computed by the analyzer. Basically f− and f+ are con-
servatively approximated by step functions, (see Figure 1). Let F be a set of
floating-point numbers and let E+ denote the set of step functions e : R+ → F.

T1 = 〈(C1
+)2⊥,≺,∨,∧,⊤≺,⊥≺〉 −−−−−→←−−−−−

αk,h

γk,h

〈E+ × E+,≺,∨,∧,⊤≺,⊥≺〉 = T2 (2)

k is a positive integer and h is a positive floating-point number. αk,h(f−, f+) =
(α−

k,h(f−), α+

k,h(f+)) such that:

α
−
k,h(f−) = e

− : ∀i : 0 ≤ i < k, ∀t : ih ≤ t < (i + 1)h, e
−(t) ≤ f

−(t) (3)

α
+

k,h(f+) = e
+ : ∀i : 0 ≤ i < k, ∀t : ih ≤ t < (i + 1)h, e

+(t) ≥ f
+(t) (4)

∀t ≥ kh, e
−(t) ≤ f

−(t) and e
+(t) ≥ f

+(t) (5)

Equations (3-5) do not indicate how to compute α−
k,h and α+

k,h, but any imple-
mentation that conforms to these conditions is a correct abstraction. We believe
that standard numerical algorithms can be adapted to compute α−

k,h and α+

k,h.
For instance, for functions of T1 defined by differential equations, the first k steps
of e− and e+ could be computed using a Runge-Kutta method, and using the
IEEE Standard 754 rounding modes towards −∞ for e− and towards +∞ for
e+ [2]. For the last step, corresponding to time t ≥ kh, safe approximations can
also be computed. For example, if f− and f+ belong to C2

+ (their first deriva-
tive is piecewise smooth) the sign of their second derivative may help to find
a fine approximation. Interesting abstractions could also be designed for peri-
odic functions (e.g. in Fourier’s space), like the trigonometric functions, which

often correspond to realistic physical inputs of digital signal processing algo-
rithms used in embedded software [10]. In addition, for k′ > k, αk′,h is a finer
abstraction than αk,h. A similar property holds for h.

γk,h has to compute a pair of functions of C1
+ but, e.g., ∨{f ∈ C1

+ : f ≺
e+} 6∈ C1

+. We have to perform an additional approximation and to chose, for
example, to let γ+

k,h(e+) be a linear interpolation function linking the points

(ih, e+(ih)) to ((i + 1)h, e+((i + 1)h)), for 0 ≤ i < k, as shown in Figure 1.

3 A Simple Analysis

Computer calculations are carried out using floating-point numbers that intro-
duce roundoff errors. For critical embedded systems, a major safety property
should consist of proving that programs take the same decisions than ideal sys-
tems working with real numbers. Let p be a program whose inputs are given by
sensors corresponding to volatile variables x1, . . . , xn. For 1 ≤ i ≤ n, Fi ⊆ ℘(C1

+)
is a set of possible concrete functions modeling the sensor related to xi. [[p]]R and
[[p]]F denote the collecting semantics of p in which calculations are carried out
with real number and floating-point numbers, respectively. We wish to compare
the traces of [[p]]R(F1, . . . , Fn) and [[p]]F(F ♯

1
, . . . , F ♯

n), where F
♯
i = α0 ◦ αk,h(Fi),

1 ≤ i ≤ n. We assume that loops are precisely cadenced, that is that we know
how long lasts an iteration. This is usually known since embedded software are
real-time programs for which the designer knows, e.g. that some loop runs at
x Hz. So we have at least a precise interval of time to date each point of an
execution trace. WCET tools also finely compute this information [5].

To perform our analysis, we define a simple concrete semantics [[.]] in which
a value is a pair of F× R written v = fεf + eεe. εf and εe are formal variables.
This semantics, detailed in [11], is a special case of a family of more informative
semantics [9]. For example, for v1 = f1εf + e1εe and v2 = f2εf + e2εe, the sum
is defined by [[v1 + v2]] =↑◦ (f1 + f2)εf + [e1 + e2+ ↓◦ (f1 + f2)]. For x ∈ R,
↑◦ (x) ∈ F is the roundoff of x and ↓◦ (x) = x− ↑◦ (x) ∈ R. In the abstract
semantics [[.]]♯ related to [[.]], the values are made of pairs of IF × IMP, i.e. an
interval of floating-point numbers and an interval of multiple precision floating-
point numbers closely approximating a set of real numbers. We can now define
the abstract semantics of a volatile variable xi in the time interval [t, t′]:

[[xi]]
♯ = [a, b]εf + [−u, u]εe (6)

with F
♯
i = (F−♯

i , F
+♯
i), a = min(F−♯

i ([t, t′])), b = max(F+♯
i ([t, t′])), and u =

max(ulp(|a|), ulp(|b|)). ulp(x) is the unit in the last place of x [7].
The analysis defined by [[.]]♯ allows one to detect divergences of control flow

between [[.]]R and [[.]]F, that is to detect different decisions taken by an ideal pro-
gram and its implementation. For a value v = fεf+eεe of [[.]]♯, they correspond to
conditions cond(v) for which [[cond(v)]]F = cond(f) 6= cond(f + e) = [[cond(v)]]R.

4 Future Work

First of all, the analysis of Section 3 is too simple to be useful in practice.
Indeed, “small” divergences of control flow between [[.]]R and [[.]]F are common

and admitted. However, [[.]]♯ shows how we technically plan to address more
interesting problems. To allow “small” divergences of control flow, the safety
property expressed in Section 3 should be reformulated as “given a program
which, in [[.]]R, reaches some control point between the instants t and t′, when
does the same program, in [[.]]F, reach the same control point?”. For example, if
an alarm must be raised when the value of a sensor reaches a certain threshold
at time t, we wish the implementation raise the same alarm in an acceptable
delay around t and we want to bound this delay.

Secondly, as discussed in Section 2, conservative algorithms computing safe
approximations αk,h satisfying the correctness criteria of equations (3-5) have
to be designed. Next, we want to add the interactions from programs to their
environment (actuators). This makes the continuous functions related to the
volatile variables change dynamically, significantly complicating the analysis.

Finally, software for embedded systems often are concurrent programs in-
teracting together by classical communications between computer programs but
also via their actions on the shared physical environment. We also plan to extend
our work to the case of concurrent systems.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138, 1995.

2. ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic, 1985.
3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

anal ysis of programs by construction or approximation of fixpoints. In POPL’77,
pages 238–252. ACM Press, 1977.

4. Blondel V. et al. Deciding stability and mortality of piecewise affine dynamical
systems. Theoretical Computer Science, 255, 2001.

5. C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and precise wcet determination for a real-life
processor. In EMSOFT’01, number 2211 in LNCS. Springer Verlag, 2001.

6. J. Feret. Static analysis of digital filters. In ESOP’04, number 2986 in LNCS,
pages 33–48. Springer-Verlag, 2004.

7. D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1), 1991.

8. N. Halbwachs, P Raymond, and Y.-E. Proy. Verification of linear hybrid systemss
by means of convex approximations. In SAS’94, LNCS. Springer Verlag, 1994.

9. M. Martel. Propagation of roundoff errors in finite precision computations: a
semantics approach. In ESOP’02, number 2305 in LNCS. Springer-Verlag, 2002.

10. M. Martel. Validation of assembler programs for dsps: A static analyzer. In
PASTE’04. ACM Press, 2004.

11. M. Martel. An overview of semantics for the validation of numerical programs. In
VMCAI’05, number 3385 in LNCS. Springer-Verlag, 2005.

12. P. J. Mosterman. An overview of hybrid simulation phenomena and their support
by simulation packages. In Hybrid Systems: Computation and Control, LNCS,
pages 165–177. Springer Verlag, 1999.

