
Improving the Numerical Accuracy of Parallel
Programs by Data Mapping

Farah Benmouhoub1, Matthieu Martel1, and Pierre-Loic Garoche2

1 LAMPS Laboratory, University of Perpignan, 52 Av Paul Alduy
Perpignan, France, 66860.

2 DTIS, ONERA, 2 Av Edouard Belin,
Toulouse, France, 31000.

1{first.last}@univ-perp.fr,2pierre-loic garoche@onera.fr

Abstract. The first objective of parallelization is to speed up the pro-
gram execution. Typically, a program is split into multiple parts that are
computed on different computation cores. A usual approach is to balance
the load of each core, splitting the computation evenly among them.
When the program performs computations in floating-point arithmetic,
we should pay extra attention to their numerical accuracy. Indeed, the
floating-point numbers are a finite approximation of real numbers, they
are therefore prone to accuracy problems due to the accumulated round-
off errors. Concerning the numerical accuracy, parallelism introduces ad-
ditional problems due to the order of operations between several compu-
tation units.
Rather than focusing on balancing the load, we focus here on a proper
split of the problem driven by the numerical accuracy of the computation.
In this paper, we describe a new technique that relies on static analysis
by abstract interpretation, and which aims at improving the numerical
accuracy of computations by dividing the problem, between computation
units, according to the order of magnitude of data.

Keywords: Numerical accuracy, Static analysis, Mapping, scientific com-
puting.

1 Introduction

Scientific computing is typically performed with floating-point arithmetics and
therefore sensitive to associated errors; and this problem tends to increase with
parallelism. To cope with this issue, we aim at improving the accuracy of com-
putation [3] using a new technique based on static analysis by abstract inter-
pretation. In floating-point computations, in addition to rounding errors, the
computations order may also affect the accuracy of the results. In this context,
different summation algorithms are possible where the result depends on the or-
der of data used to compute this summation as presented in the examples given
in Figure 1.

To better illustrate, we can take an example of calculating the sum of three
values x, y and z, where x = 109, y = −109 et z = 10−9, we obtain:

((x+ y) + z) = ((109 − 109) + 10−9) = 10−9 (1)

(x+ (y + z)) = (109 + (−109 + 10−9)) = 0 (2)

The equality as well as addition represent here the operator performed with
floating point arithmetics. We note that, for the same values of x, y and z, and
for the same arithmetic operation, we get two different results because of parsing
the three values differently.

(t + (z + (y + x))) (((x + y) + z) + t) (((x + y) + (z + t)))

Fig. 1. The different sums possible.

The key idea of this work is to detect potential ordering of scalars that could
lead to an optimization of the numerical accuracy of the computation. In the
lack of accuracy of the above example, the issue was caused by computation
involving scalars of different orders of magnitude. Roughly speaking, in order to
keep the computation accurate, one need to know if the variables can be ordered
with respect to their order of magnitude, starting summations with the smallest
elements.

We propose to rely on static analysis to detect such arrangements of matrix
coefficients: analyzing the data or the program, we would like to detect the order
of magnitude of each scalar and the ordering (increasing, decreasing, balanced)
of each part of data assigned to each computation unit. Once this ordering is
accurately computed, one can choose an appropriate summation algorithm (left
to right, right to left, balanced) and obtain more accurate floating point results.

In the case of parallel programs [10], we aim at specializing the code of
each process depending on its data, instead on focusing only on load balancing
between computation cores. This specialization is based on data mapping [7] [8].
The idea is to assign to each processor sets of data that can be summed toghether
accurately. This corresponds to a certain parsing of the sum. To do so, we start
with a static analysis of data and next we distribute data accordingly among the
computation units. To illustrate this technique, we will apply it to an iterative
method for solving a linear system of the form Ax = b. To keep the presentation
simple we used the simplest iterative scheme: Jacobi’s method.

In this article, we describe the different stages of our technique. First of all,
given a sequence of values s = x1, x2, . . . xn, the property indicating how the
elements of s are ordered is called the gradient of s. We denote grad(s) this
property. The gradient grad(s) may be either increasing, decreasing, constant
or unknown respectively denoted by grad(s) ∈ {↗,↘,→,>}.

2

The first step of our method is to perform a static analysis of the matrix A
and the vector x in order to be able to identify the sign and the gradient of the
different blocks. After this identification, each block is assigned to a computation
unit with a well-chosen summation algorithm.

This article is organized as follows. Section 2 presents briefly Jacobi’s method,
as well as existing works parallelizing it; we also justify our choice for this
method. Section 3 presents our contribution: we detail our technique with its
different steps. Section 4 details our motivational example. Section 5 describes
the experimental results obtained during the measurement of the efficiency of
our technique. Finally, in Section 6 we conclude and discuss about the future
work in the continuation of the present article.

2 Jacobi’s Method

2.1 A simple Iterative Algorithm to Solve Linear Systems

The Jacobi method is a well known numerical method used to solve linear sys-
tems of n equations with n unknowns. We choose it for its simplicity, and as
a first algorithm on which to apply our methodology. In this method, an ini-
tial approximate solution x0 is selected and through an iterative procedure the
algorithm tries to find the real solution x.

For more description let us consider the following system of n linear equations
Ax = b, where:

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
an1 an2 · · · anm

 , b =


b1
b2
...
bn

 and x =


x1
x2
...
xn


The computation of the solution at each iteration is given by Equation (3)

below:

xk+1
i =

1

aii

bi − n∑
j=1, i 6=j

aijx
k
j

 . i = 1, . . . , n, aii 6= 0. (3)

Note that Jacobi’s method is stable whenever the matrix A is strictly diagonally
dominant (cf. Equation 4), ie. on each line, the absolute value of the diagonal
term is greater than the sum of absolute values of the other terms:

∀i ∈ 1, . . . , n, |aii| >
∑
i6=j

|aij |. (4)

Our choice for this method is related to the existence of the summation
operator, i.e. a sum is done during the computation of each iterate. Since we
manipulate floating-point numbers, this sum may become wrong because of ac-
cumulated errors, for an example, if we sum the small values with the large ones
an absorption may arise and consequently a problem of accuracy. To limit this
problems it is recommended to sum the values increasingly (in absolute value).

3

2.2 Parallelisation of Jacobi’s Method

Several works have been focused on parallelizing Jacobi algorithms. Luke and
Park [9] consider two parallel Jacobi algorithms for computing the singular value
decomposition of an n × n matrix. By relating the algorithms to the cyclic-by-
rows Jacobi method, they prove convergence of one of the algorithm for odd
values of n and in the general case for the second algorithm.

Zhou and Brent [1] show the importance of sorting columns by norms in
each sweep for one-sided Jacobi SVD computation. They describe two parallel
Jacobi orderings. These orderings generate n(n− 1)/2 different index pairs and
sort column norms at the same time. The one-sided Jacobi SVD algorithm using
these parallel orderings converges in about the same number of sweeps as the
sequential cyclic Jacobi algorithm.

Coope and Macklem [5] present how to efficiently use parallel and distributed
computing platforms when solving derivative-free optimization problems with
the Jacobi algorithm. Convergence is achieved by introducing an elementary
trust region subproblem at synchronization steps in the algorithm.

All these works focused on the parallelisation of Jacobi’s method. Some are
focused on the improvement of the convergence of the algorithm, eg. when com-
puting a singular value decomposition. Some others try to make the best use
of the parallel architecture performance. However, none of them addressed the
issue of the numerical accuracy of computations.

Our past results [6] show that improving the accuracy of computation also led
to acceleration of convergence for iterative algorithms. Our motivation is there-
fore to parallelize the Jacobi’s method focusing first on accuracy and obtaining,
as a side result, a better convergence.

3 Accuracy bassed Mapping

3.1 Greedy Algorithm

Our contribution relies on static analysis for the detection of lines, columns or
blocks of the matrix that could be efficiently optimized with respect to numerical
accuracy. More precisely, we identify a group of data x = x1, x2, . . . xn accord-
ingly to theirs signs and magnitudes, we call this property of x the gradiant of
x.

Fig. 2. Different parallelisation of Jacobi’s method.

4

As mentioned in Section 1, we consider four different gradiants: ↗ (increas-
ing), ↘ (decreasing), → (balanced) or > (unknown), given a large sequence
x = x1, x2, . . . xn corresponding to a line or column or block of the matrix (see
Figure 2).

We oftenly cannot assign a single gradiant to the whole sequence x. In this
case, we aim at assigning a sequence of gradiants to x. For example, let x =
1, 2, 3, 4, 4, 3, 2, 1 we aim at assigning the sequence {↗,→,↘} of gradiants to x.
To do so we use the greedy algorithm displayed in Algorithm 1.

Algorithm 1 Greedy algorithm

while (iteration < Nb iterations) do
while (position < (iteration× n)− 1) do

Grad position = position;
Grad x = compare(x[position], x[position + 1]);
position = position + 1;
New Grad x = compare(x[position], x[position + 1]);
while ((Grad x = New Grad x) and (position < (iteration×n)−1))) do

position = position + 1;
Grad x = New Grad x;
New Grad x = compare(x[position], x[position + 1]);

end while
end while
iteration=iteration+1;
position=position+1;

end while

In our study to detect the blocks of the same sign and magnitude we use
what we call the greedy algorithm. The idea is to compare the values of the
vector scalars pair by pair, these values can be in decreasing, increasing or bal-
anced order. The number of blocks is determined by the number of gradiants
calculated by this algorithm. To do so, the algorithm takes as input the solu-
tion vector x = x1, x2.....xn at each iteration. The outputs of the algorithm are
the gradiant of each block noted by Grad x and the index of the component
by which this block begins noted by Grad position. If we consider the example
presented previously x = 1, 2, 3, 4, 4, 3, 2, 1 we obtain as an output the following
two pieces of information for each block, [Grad position = 1 : Grad x =↗],
[Grad position = 4 : Grad x =→], [Grad position = 5 : Grad x =↘].

3.2 Static Analysis

In this section, we introduce our principal contribution, detecting increasing,
decreasing or balance patterns in vectors in order to select to proper summation
arrangment.

We introduce abstract domains able to detect such patterns, as properties
over vector sets. Let Rn be a vector of size n and ℘(Rn) a set of such n-sized

5

vectors. This set is fitted with a partial order, the set inclusion. It is also a
complete lattice.

Thanks to the framework of Abstract Intepretation [4] we can define different
abstractions of this lattice, and combine them to characterize properties of sets
of n-vectors.

Figure 3 sketches our hierachy of abstractions. A first abstraction Sign relies
on the classical sign domains to detect whether all elements of the vector have
the same sign. A second one, Grad(ient) is used to represent the increasing,
decreasing or balanced nature of the vector scalars. This property is computed
over a first abstraction representing values by their floating point exponent, ie.
their order of magnitude. We now define precisely each abstraction step.

Fig. 3. Global diagram of abstractions.

3.3 Expn: order of magnitude of matrix elements

A first abstract domain represents a set of n-vectors ℘(Rn) by a vector of set of
exponent Expn = (℘(Z))n. Exponents are defined as signed integers correspond-
ing to the exponent of the real number they represent, ie. the power of 10 they
have when expressed in scientific notation.

Let us first formalize this abstraction: the lattice 〈℘(R),⊆,∪,∩, ∅,R〉 is ab-
stracted by the lattice 〈℘(Z),⊆,∪,∩, ∅,Z〉. Let (αExp, γExp) be the pair of ab-
straction and concretization functions defined as:

αExp : ℘(R)→ ℘(Z)
X 7→ {log10(x) : x ∈ X)}

γExp : ℘(Z)→ ℘(R)
Y 7→ {x ∈ R| log10(x) ∈ Y)}

(5)

Theorem 1 (Exp galois connection). The pair of (αExp, γExp) is a Galois
connection.

〈℘(R),⊆〉 −−−−→←−−−−
αExp

γExp
〈Exp,⊆〉

6

Proof. Both domains are sets and the functions are defined element-wise: they
are monotonic. αExp ◦ γExp(Y) = Y is reductive while γExp ◦ αExp(X) = {x ∈
R|∃x′ ∈ X, log10(x) = log10(x′)} ⊇ X is extensive. ut

The abstraction function represents a set of value by the magnitude obtained
with a log10 function. The concretization function is the associated operation to
obtain a Galois connection. As an example, αExp({1.104, 2.104, 3.104}) = {4}
since all these values share the same exponent 4.

We can now define the lift of this abstraction to sets of n-vectors in ℘(Rn).
The lattice 〈℘(Rn),⊆,∪,∩, ∅,R〉 is abstracted by the lattice Expn = 〈(℘Z)n,⊆n
,∪n,∩n, ∅n,Zn〉 where ⊆n,∪n, and ∩n denote the lift of classical set operators
to n-vectors. Eg. ∀x, y ∈ (℘Z)n, x⊆ny iff ∀i ∈ [1, n], xi ⊆ yi. Similarly ∀x, y ∈
(℘Z)n,∃z ∈ (℘Z)n, st. z = x∪ny and ∀i ∈ [1, n], zi = xi ∪ yi.

Let us introduce the pair of function (αnExp, γ
n
Exp):

αnExp : ℘(Rn)→ (℘Z)n

X 7→ z ∈ (℘Z)n s.t. ∀i ∈ [1, n], zi = αExp({xi|x ∈ X})
γnExp : (℘Z)n → ℘(Rn)

z 7→ {x ∈ Rn|∀i ∈ [1, n], xi ∈ γExp(zi)}

(6)

Theorem 2 (Expn galois connection). The pair of (αnExp, γ
n
Exp) is a Galois

connection.

〈℘(Rn),⊆〉 −−−−→←−−−−
αn

Exp

γn
Exp

〈Expn,⊆n〉

Proof. The two domains ℘(Rn) and ℘(Z)n are sets and the functions are defined
element-wise for each vector: they are monotonic. αnExp ◦ γnExp(z) = z is reductive
while γnExp ◦ αnExp(X) = {x ∈ Rn|∃x′ ∈ X ∀i ∈ [1, n], αExp(x

′
i) = αExp(xi)} ⊇ X

is extensive. ut

The example below represents the abstraction of a set of vectors ℘(Rn) by a
vector of set of exponent ℘(Z)n using the abstract function αnExp.

3.4 Exp#n: Abstraction of Exponants in Scalar Words

We need to further abstract the vectors of set of exponents Expn = (℘Z)n we
built previous section. Since each index of these vectors is a set of integers, one
can rely on the state of the art of abstract domains to represent these sets.

7

Let 〈D,vD〉 be a sound abstraction of 〈℘(Z,⊆〉 associated with a proper

Galois connection (αD, γD). We define the set Exp#nD = Dn as the n-vector of
D elements. Each operator is the lift of domain D operators to vectors. Eg.
∀x, y ∈ Exp#nD , x vnD y iff ∀i ∈ [1, n], xi vD yi.

We introduce the following abstraction:

〈Expn,⊆〉 −−−−→←−−−−
αn

D

γn
D 〈Exp#nD ,vnD〉 (7)

where αnD(x) = z with ∀i ∈ [1, n], zi = αD(x). Similarly, γnD(z) = x ∈ Expn with
∀i ∈ [1, n], xi ⊆ γD(zi).

We propose to instantiate this abstraction by two basic abstract domains:

1. Kildall’s constants domain [] D = Z ∪ {⊥,>}
2. Intervals D = ((Z ∪ {−∞})× (Z ∪ {+∞})) ∪ {⊥}

3.5 Abstraction in Gradient

To abstract the gradient from the data, we define a new comparison relation
according to the order of magnitude of the data noted by ≤#, such that we
associate to a set of values (x1 · x2 · · xn) one of the following five values
{⊥,↗,↘,→,>}.

Exp#n = Kildall(Z)n x1 ≤# x2

= Interv(Z)n [a, b] ≤# [c, d]

≤#
1 : b ≤ c
≤#

2 : a ≤ d

αG(x1 · x2 · · xn) =


↗ if x1 ≤# x2 ·· ≤# xn,
↘ if x1 ≥# x2 ·· ≥# xn,
→ if x1 =# x2 · ...· =# xn,
> Otherwhise.

Where αG is the abstract function which takes a sequence of real numbers (x1 ·
x2 · · xn) and computes its gradient, ie. if the vector scalars is ordered in
increasing order defined in this section by ≤#, the gradient is represented by↗.
Conversely, if the vecteur scalars is in the decreasing order the gradient takes
the value ↘. Similarly for the balanced vector scalars where the gradient takes
the value →, and when the values of the vector scalars are incomparable the
gradient will be equal to >.

4 Case Studies

4.1 Flexion of a Beam

The first example consists of a physical problem arising in Mechanics which con-
cerns the flexion of an 1D elastic beam with Dirichlet boundary conditions on

8

its extremities [2]. The discretization of this kind of problem is based on the
finite element method (FEM) that was usually used to solve complicated prob-
lems in engineering. The representative diagram of our case study is presented
in Figure 4.
where u is the displacement such as u1 = α and uN+1 = β, α and β the ex-

Fig. 4. Representation of the flexion of an 1D beam.

tremities where the beam is fixed such as (α = β = 0). f is a constant vertical
force acting on the domain interval Ω = [0, 1]. A formalization of our problem
can be given as follows:{

u′′(x) = f ∀x ∈]0, 1]
u(0) = α and u(1) = β

In order to obtain a linear system to resolve, we need to do the discetisation
of the mesh. So, first we have to introduce the mesh of the domain Ω = [0, 1]
by considering N + 1 nodes {xi, i = 1, .., N + 1} of the interval [0, 1] with x1 =
0, xN+1 = 1 and xi+1 = xi + hi, for i = 1, .., N . Next, the domain [0, 1] is
discretized into N intervals (xi, xi+1) that are the finite elements of size hi.
Finally, after calculations and substitution of the known values (u1, uN+1) we
obtain the following tridiagonal system.
For our experiments, the values of h are computed automatically with the

specificity of obtaining symmetrical values of h. More precisely, we initilize the
first and the last values of h and we compute the others so that h[n−i−1] = h[i].
We suppose that the value of the penalization C is equal to 106 and the vertical

9

force f = −20N/m2.
We remind that our subject is to create linear systems of different size N which
modelize the flexion of a 1D beam. Then, we calculated the real solution X using
the Jacobi’s method.
Once the solution is calculated, we abstract the values of the solution vector to
exponent as presented in Section 3.3. After abstraction we applied the greedy
algorithm in order to found the gradient of the values, more precisely order of
magnitude of this values.

4.2 Example

To better explain, we take an example of a matrix of N=4. First, we generate the
system corresponding of the flexion of 1D beam. Then, We compute the solution
of this linear system by the Jacobi’s method, and we associate to each value of
the solution vector its floating point exponent using the abstract function α·Exp
presented in the Section 3.2.

A =

(
11778.279410 −1778.279410
−1778.279410 3556.558820

)
, b =

(
0.000662
0.001125

)

x1 =

(
-5.623062e-07 ⇒ Exp1 = -7
-3.162326e-06 ⇒ Exp2 = -6

)
x2 =

(
-1.039753e-06 ⇒ Exp1 = -6
-3.443479e-06 ⇒ Exp2 = -6

)
x3 =

(
-1.082201e-06 ⇒ Exp1 = -6
-3.682203e-06 ⇒ Exp2 = -6

)
x4 =

(
-1.118244e-06 ⇒ Exp1 = -6
-3.703427e-06 ⇒ Exp2 = -6

)
x5 =

(
-1.121448e-06 ⇒ Exp1 = -6
-3.721448e-06 ⇒ Exp2 = -6

)
x6 =

(
-1.124169e-06 ⇒ Exp1 = -6
-3.723050e-06 ⇒ Exp2 = -6

)
x7 =

(
-1.124169e-06 ⇒ Exp1 = -6
-3.723050e-06 ⇒ Exp2 = -6

)
Once this step is over, we apply a second abstraction noted by Grad(ient)

on the exponents generated by the first abstraction in order to represent the
increasing, decreasing or balanced nature of the vector scalars.

x1 =

(
Exp1 = -7
Exp2 = -6

)
⇒ grad =↗ x2 =

(
Exp1 = -6
Exp2= -6

)
⇒ grad =→

x3 =

(
Exp1 = -6
Exp2 = -6

)
⇒ grad =→ x4 =

(
Exp1 = -6
Exp2 = -6

)
⇒ grad =→

x5 =

(
Exp1 = -6
Exp2 = -6

)
⇒ grad =→ x6 =

(
Exp1 = -6
Exp2 = -6

)
⇒ grad =→

x7 =

(
Exp1 = -6
Exp2 = -6

)
⇒ grad =→

10

5 Experimental Results

In this section, we present the experimental results of our study concerning the
numerical accuracy of computations using a new technique discussed in this ar-
ticle. First, we want to improve the effeciency of our technique in the detection
of scalars that have the same sign and gradiant which can be grouped in block
and that could eventually lead to an optimization of the numerical accuracy of
computations. The most critical case is to have equality between the number of
blocks and the number of scalars. In other words, the ratio between the total
number of blocks and the size of matrix is equal to 1. To be done, we generate
different linear systems of the form Ax = b that model the example previously
described in Section 4, after that we solve this systems using Jacobi’s method,
then we applying our technique on the solution vector x. For measuring effec-
tiveness of our technique we compute the average of gradiant of a set of matrix
to compare the variation of these average with those of matrix sizes, Figure 5
represents the gradiants average corresponding to each matrix size from 10 to
1000.

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0 	200 	400 	600 	800 	1000 	1200

Av
er
ag
e	
Gr
ad
ie
nt
	fo
r	e
ac
h	
M
at
rix

Matrix	Sizes

Gradient	Variation	Versus	Matrix	Sizes	

Fig. 5. Gradiants average for different matrix size from 10 to 1000.

We notice that for small matrix for example (N = 100) the average is around
of 0.6, so we conclude that the number of blocks represents 60% of the size of
matrix. We also notice that more the size of the matrix increases, more the
average decreases. From these two remarks, we deduce that the efficiency of our
technique is reached whene we handle large matrix.

Secondly, we want to know if for a given matrix we can generalize the divi-
sion of scalars into lines, columns or blocks. As mentinnoed in Section 3, for a

11

linear system of the form Ax = b we apply our technique to a solution vector
x = x0, x1,xn−1 at each iteration in order to group the data accordingly to
theirs signs and magnitudes. We associate for each sequence of data a correspond-
ing sequence of gradiants, and each block is represented by two informations: the
index i of the component xi,∀i ∈ [0, n − 1] by which it starts and the gradiant
associated to its sequence of scalars. For the sake of simplicity we consider a
matrix of 16× 16 with coefficients taken from a realistic example corresponding
to the flexion of a beam developed in Section 4 the results of our study is given
below:
iteration1 : [0 :→][2 :↘][3 :→][4 :↘][5 :→][9 :↗][10 :→][11 :↗][12 :→]
iteration2 : [0 :→][1 :↘][2 :↗][3 :↘][5 :→][6 :↗][7 :↘][8 :→][10 :↗][11 :→][12 :↗]
iteration3 : [0 :→][1 :↘][2 :↗][3 :→][4 :↘][5 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :→]
iteration4 : [0 :↘][1 :↗][2 :↘][4 :↗][5 :↘][7 :↗][9 :↘][12 :→]
iteration5 : [0 :→][1 :↗][2 :↘][3 :↗][4 :↘][6 :↗][7 :↘][8 :↗][10 :↘]
iteration6 : [0 :→][1 :↘][2 :↗][3 :↘][4 :→][6 :↗][7 :↘][9 :↗][12 :↘]
iteration7 : [0 :→][1 :↘][2 :→][3 :↘][4 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :↘][12 :↗]
iteration8 : [0 :→][1 :↗][2 :↘][4 :↗][5 :↘][7 :↗][9 :↘]
iteration9 : [0 :→][2 :↘][3 :↗][4 :↘][6 :↗][7 :↘][8 :↗][10 :↘]
iteration10 : [0 :→][1 :↘][2 :↗][3 :↘][4 :→][5 :↗][7 :↘][9 :→][10 :↗][12 :↘]
iteration11 : [0 :→][1 :↘][2 :↗][3 :↘][4 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :↘][12 :↗]
iteration12 : [0 :→][1 :↗][2 :↘][4 :↗][5 :↘][6 :→][8 :↗][9 :↘]
iteration13 : [0 :↘][1 :↗][2 :↘][3 :↗][4 :↘][6 :↗][7 :↘][8 :↗][10 :↘]
iteration14 : [0 :↗][1 :↘][2 :↗][3 :↘][5 :↗][7 :↘][9 :↗][12 :↘]
iteration15 : [0 :→][1 :↘][2 :↗][3 :↘][4 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :↘][12 :↗]
iteration16 : [0 :→][1 :↗][2 :↘][4 :↗][5 :↘][7 :↗][9 :↘]
iteration17 : [0 :→][1 :↗][2 :↘][3 :↗][4 :↘][6 :↗][7 :↘][8 :↗][10 :↘]
iteration18 : [0 :→][1 :↘][2 :↗][3 :↘][5 :↗][7 :↘][9 :↗][12 :↘]
iteration19 : [0 :↗][1 :↘][2 :↗][3 :↘][4 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :↘][12 :↗]
iteration20 : [0 :↘][1 :↗][2 :↘][4 :↗][5 :↘][7 :↗][9 :↘]
iteration21 : [0 :→][1 :↗][2 :↘][3 :↗][4 :↘][5 :→][6 :↗][7 :↘][8 :→][9 :↗][10 :↘]
iteration22 : [0 :→][1 :↘][2 :↗][3 :↘][5 :↗][7 :↘][9 :↗][12 :↘]
iteration23 : [0 :→][1 :↘][2 :↗][3 :↘][4 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :↘][12 :↗]
iteration24 : [0 :→][1 :↗][2 :↘][4 :↗][5 :↘][7 :↗][9 :↘]
iteration25 : [0 :→][2 :↘][3 :↗][4 :↘][6 :↗][7 :↘][8 :↗][10 :↘]

If we take iteration 11 as an example, we notice that after each 4 iterations we
find the same sequence of blocks, ie. the same sequence of gradiants is associate to the
sequence of scalars as it shown by iterations 15, 19, 23. In the same way, the iterations
16 and 14 are repeated after 4 iterations respectively given by the iterations 20, 24 and
18, 22.

6 Conclusion

References

1. B B. Zhou and Richard Brent. On parallel implementation of the one-sided jacobi
algorithm forsingular value decompositions. pages 401–408, 02 1995.

12

2. Mikaël Barboteu, Nacera Djehaf, and Matthieu Martel. Numerically accurate code
synthesis for gauss pivoting method to solve linear systems coming from mechanics.
Computers & Mathematics with Applications, 77(11):2883–2893, 2019.

3. Farah Benmouhoub, Nasrine Damouche, and Matthieu Martel. Improving the nu-
merical accuracy of high performance computing programs by process specializa-
tion. In Matthieu Martel, Nasrine Damouche, and Julien Alexandre Dit Sandretto,
editors, TNC’18. Trusted Numerical Computations, volume 8 of Kalpa Publications
in Computing, pages 11–23. EasyChair, 2018.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Principles
of Programming Languages, pages 238–252, 1977.

5. I D. Coope and Mason Macklem. Parallel jacobi methods for derivative-free op-
timization on parallel or distributed processors. The ANZIAM Journal, 2004, 07
2005.

6. N. Damouche, M. Martel, and A. Chapoutot. Impact of accuracy optimization on
the convergence of numerical iterative methods. In M. Falaschi, editor, LOPSTR
2015, volume 9527 of Lecture Notes in Computer Science, pages 143–160. Springer,
2015.

7. Yiannis Georgiou, Emmanuel Jeannot, Guillaume Mercier, and Adèle Villiermet.
Topology-aware job mapping. IJHPCA, 32(1):14–27, 2018.

8. Torsten Hoefler, Emmanuel Jeannot, and Guillaume Mercier. An Overview of
Process Mapping Techniques and Algorithms in High-Performance Computing. In
Emmanuel Jeannot and Julius Zilinskas, editors, High Performance Computing on
Complex Environments, pages 75–94. Wiley, June 2014.

9. F. T. Luk and H. Park. A proof of convergence for two parallel jacobi svd algo-
rithms. IEEE Trans. Comput., 38(6):806–811, June 1989.

10. D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamber-
lain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot,
A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief, N. Maruyama, C. J. New-
burn, and M. Perics. Trends in data locality abstractions for hpc systems. IEEE
Transactions on Parallel and Distributed Systems, 28(10):3007–3020, Oct 2017.

13

