
Enhancing the Implementation
of Mathematical Formulas

for Fixed-Point and Floating-Point Arithmetics

Matthieu Martel

Laboratoire ELIAUS-DALI
Université de Perpignan Via Domitia

52 avenue Paul Alduy
66860 Perpignan Cedex, France

e-mail : matthieu.martel@univ-perp.fr

1 Introduction

In general, the computations carried out on machines are approximative because
of the finite representation of numbers. Then an obvious question is how to
estimate the quality of a certain implementation of a formula and how to enhance
it. For example, one may wish to measure the absolute or relative precision of the
result of a sequence of operations, assuming ranges for the inputs and assuming
that the operations are performed in the floating-point arithmetic described by
the IEEE754 Standard [1]. If a fixed-point arithmetic is used, one may rather
aim at minimizing the number of digits required to reach a given precision. these
problems have many industrial applications: floating-point numbers are more and
more used in safety-critical software and fixed-point numbers are widely used in
many, critical or not, embedded systems (from cellular phones to vehicles).

Understanding the reasons why the implementation of a formula is numer-
ically bad and how to improve it is usually difficult because computer arith-
metics are particularly not intuitive. For example, in floating-point arithmetic,
the elementary operations (e.g. addition, multiplication. . .) are not associative,
invertible, distributive, etc. [5, 13]. So it is necessary to provide tools to the pro-
grammers, in order to help them to increase the numerical quality of their codes.
During the last few years, static analyses by abstract interpretation [2] of the
numerical accuracy of floating-point computations have been introduced [6, 9,
11] and implemented in the Fluctuat tool [7, 8] which is used in many industrial
contexts. A main advantage of this method is that it enables one to bound safely
all the errors arising during a computation, for large ranges of inputs. It also
provides hints on the sources of errors, that is on the operations which introduce
the most important precision loss. This latter information is of great interest
to improve the accuracy of the implementation. Other methods, not based on
static analysis, are compared in [10]. More recently, a semantics-based program
transformation [3] for floating-point arithmetic expressions has been introduced
[12]. This method enables one to automatically rewrite a formula into another
mathematically equivalent and more precise formula.

Regardless of the arithmetic used, tools are necessary to help the program-
mers to determine which operations reduce the quality of an implementation
and how to improve it. This is the main purpose of this article: we consider
computer arithmetics extended by quality indicators. The largest the indicator
is, the worst the implementation is. Then we show how to detect automatically
which operations mainly contribute to make the indicators grow and how to
rewrite an expression into a more efficient one w.r.t. the chosen indicator. De-
tecting the places where quality is lost is a generalisation of the work on error
series introduced to assert the accuracy of floating-point expressions [11, 7]. The
enhancement of the implementation is a generalisation of the semantics-based
transformation of [12]. We apply our framework to two different arithmetics: the
floating-point arithmetic and the fixed-point arithmetic. In the former case, the
indicator concerns the precision of the computation. In the latter case, the indi-
cator concerns the number of digits required to perform an exact computation.

This article is organised as follows. Section 2 briefly introduces the floating-
point and fixed-point arithmetics. In Section 3, we introduce an abstract seman-
tics which computes the indicators used to estimate the quality of a formula.
Section 4 introduces more subtle abstract semantics to detect the operations
which lower the quality of an implementation. Finally, in Section 5, we intro-
duce a semantics-based transformation which makes it possible to automatically
rewrite formulas into more efficient ones. All these methods are applied to the
floating-point and fixed-point arithmetics.

2 Computer Arithmetics

This section briefly surveys the aspects of floating-point and fixed-point arith-
metics useful to the comprehension of the rest of this article. It also specifies the
quality indicators that we aim at improving for each format.

sign

e0 eq-1 d0 dp-1

exponent mantissa

s

d0 d-n

sign integer part fractional part

s d-1
dm-1

Floating-Point Format

Fixed-Point Format

Fig. 1. Representation of the floating-point and fixed-point formats.

2.1 Floating-Point Arithmetic and the IEEE754 Standard

The IEEE754 Standard specifies the representation of numbers and the semantics
of the elementary operations for floating-point arithmetic [1, 5]. It is implemented
in most of modern general-purpose processors. First of all, a floating-point num-
ber x in base β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (1)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the mantissa with dig-
its 0 ≤ di < β, 0 ≤ i ≤ p − 1, p is the precision and e is the exponent,
emin ≤ e ≤ emax (see Figure 1). A floating-point number x is normalized when-
ever d0 6= 0. Normalization avoids multiple representations of the same number.
IEEE754 Standard introduces a few values for p, emin and emax. For exam-
ple, simple precision numbers are defined by β = 2, p = 23, emin = −126 and
emax = +127. The IEEE754 Standard also specifies special values (denormalized
numbers, infinites and NaN) which are not used in this article.

Let ↑◦ : R→ F be the function which returns the round-off of a real number
following the rounding mode ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼} (towards ±∞, 0 or to the
nearest). ↑◦ is fully specified by the IEE754 Standard which also requires, for
any elementary operation ♦, that:

x1 ♦F,◦ x2 = ↑◦ (x1 ♦R x2) (2)

Equation (2) states that the result of an operation between floating-point num-
bers is the round-off of the exact result of this operation. In this article, we also
use the function ↓◦: R→ R which returns the round-off error. We have:

↓◦ (r) = r− ↑◦ (r) (3)

In floating-point arithmetic, enhancing the quality of the implementation of a
formula f(x) then consists of minimizing the round-off error on the result. In
other words, using the notation of Equation (3), we aim at minimizing ↓◦ (f(x)),
for all the possible vectors of inputs x.

2.2 Fixed-Point Arithmetic

There is no general standard for fixed-point arithmetic comparable to the IEEE754
Standard. Following [14, 15], we consider that a number x is written:

x = s · (dm−1 . . . d0.d−1 . . . d−n) = s ·
m−1X
i=−n

diβ
i (4)

In Equation (4), x is a number made of m+n digits. The m first digits represent
the integer part while the n last digits represent the fractional part (see Figure
1). s ∈ {−1, 1} is the sign of x. For the basis, we always assume that β = 2.
In addition, for the sake of simplicity and without lost of generality, we do
not consider numbers encoded in the two’s complement format which is also

v = v1 + v2

v1 + v2 → v

e1 → e′1
e1 + e2 → e′1 + e2

e2 → e′2
v1 + e2 → v1 + e′2

v = v1 × v2

v1 × v2 → v

e1 → e′1
e1 × e2 → e′1 × e2

e2 → e′2
v1 × e2 → v1 × e′2

Fig. 2. Operational semantics of arithmetic expressions.

common in the implementations of fixed-point arithmetic. As argued in the next
paragraph, we assume that no overflow arises and that, whenever it is necessary,
the results of elementary operations are truncated (rounding mode towards zero).

Slightly different problems may be formulated concerning the enhancement
of the implementation of a formula in fixed-point arithmetic. Following [14, 15],
in this article, we are interested in minimizing the m parameter of Equation (4),
that is in finding the minimal size for the integer part of numbers such that
no overflow arise during the computation, for all the acceptable inputs. So, we
introduce the function

←◦ (x) = min {m ∈ N : bxc ≤ βm} (5)

where bxc denotes the integer part of x. Implicitly, we consider that in the final
implementation all the values are encoded in the same format (the one for which
we determine m). This is usually the case when the program is targeted for a
general purpose processor: the designer wants to know, for example, if 16 bits
are enough to perform the computation or if all the data must be encoded in a
32 bits format. For more specific processing units (e.g. FPGAs), one may wish
to minimize the size of the circuit by using numbers of different formats (e.g. to
use less bits when the values are smaller). In this case, the way we compute the
quality indicators for a fixed-point implementation should be slightly modified.

3 Measuring the Quality of an Implementation

In this section, we introduce two semantics for the arithmetic expressions whose
syntax is given by:

e ::= v | e1 + e2 | e1 − e2 | e1 × e2 (6)

These semantics are related to our two quality indicators (see Section 2). In
both cases, a value is a pair (x, µ) where x denotes the computer number, i.e. a
fixed-point or a floating-point number, and µ measures the quality of x. In our
case, µ will denote either the number of digits needed to encode the integer part
of x in the fixed-point format (parameter m of Equation (4)) or the distance
between a real number xR and the floating-point number x corresponding to the
round-off of xR (i.e. ↓◦ (xR) as defined in Equation (3)). In addition, we consider
a left-to-right evaluation order for the expression, as given by the straightforward
reduction rules of Figure 2.

In the rest of this article, we consider abstract values (x], µ]) where x] and µ]

are intervals. An value (x], µ]) abstracts a set of concrete values {(xi, µi), i ∈ I}

by intervals in a component-wise way. The reduction rules of Figure 2 are left
unchanged for the abstract semantics.

(x]
1, µ

]
1) + (x]

2, µ
]
2) =

“
↑]◦ (x]

1 + x]
2), µ

]
1 + µ]

2+ ↓
]
◦ (x]

1 + x]
2)

”
(7)

(x]
1, µ

]
1)− (x]

2, µ
]
2) =

“
↑]◦ (x]

1 − x]
2), µ

]
1 − µ]

2+ ↓
]
◦ (x]

1 − x]
2)

”
(8)

(x]
1, µ

]
1)×(x]

2, µ
]
2) =

“
↑]◦ (x]

1 × x]
2), x

]
1 × µ]

2 + x]
2 × µ]

1 + µ]
1 × µ]

2+ ↓
]
◦ (x]

1 × x]
2)

”
(9)

Fig. 3. Abstract semantics for the floating-point arithmetic.

(x]
1, µ

]
1) + (x]

2, µ
]
2) =

“
x]

1 + x]
2, max(µ]

1, µ
]
2,←

]
◦ (x]

1 + x]
2))

”
(10)

(x]
1, µ

]
1)− (x]

2, µ
]
2) =

“
x]

1 − x]
2, max(µ]

1, µ
]
2,←

]
◦ (x]

1 − x]
2))

”
(11)

(x]
1, µ

]
1)× (x]

2, µ
]
2) =

“
x]

1 × x]
2, max(µ]

1, µ
]
2,←

]
◦ (x]

1 × x]
2))

”
(12)

Fig. 4. Abstract semantics for the fixed-point arithmetic.

The abstract semantics of arithmetic expressions are given in Figure 3 and
in Figure 4 for the floating-point and fixed-point arithmetics, respectively. In
the floating-point case (Figure 3), we compute how the round-off errors are
propagated. ↓]◦ is a safe abstraction of ↓◦, i.e. ∀x ∈ [x, x], ↓◦ (x) ∈ ↓]◦ ([x, x]).
For example, if the current rounding mode ◦ is to the nearest, one may choose

↓]◦ ([x, x]) = [−y, y] with y =
1

2
ulp

(
max(|x|, |x|)

)
(13)

where the unit in the last place ulp(x) is the weight of the least significant digit
of the floating-point number x. For an addition, the errors on the operands are
added to the error due to the round-off of the result, as specified by Equation
(2). For a subtraction, the errors on the operands are subtracted. Finally, the
semantics of the multiplication comes from the development of (x]

1 +µ]
1)× (x]

2 +
µ]

2).
In the fixed-point case (Figure 4), the measure µ] indicates the maximal

number of bits needed to encode a value somewhere in the computation. In this
case, we do not need an interval for µ] since we only store the greatest value. So,
in the fixed-point abstract semantics µ] is an integer. To compute µ], we take the
maximum of the measures µ]

1 and µ]
2 on the operands and of the measure←]

◦ (x])
on the result x] of an operation, where ←]

◦ (x) stands for a safe abstraction of
←◦ (x), i.e. ∀x ∈ [x, x], ←◦ (x) ∈ ←]

◦ ([x, x]).

For example, let us consider the expression:

E = (a + (b + (c + d)))× e (14)

and let us assume that the variables belong to the ranges:

a ∈ [−14,−13] b ∈ [−3,−2]
c ∈ [3, 3.5] d ∈ [12.5, 13.5] e = 2

(15)

Using the semantics of Figure 3 and Figure 4, we obtain the following results:

– Floating-point arithmetic:

Efloat =
(
[−3, 4], [−2.861022949 · 10−6, 0]

)
This value indicates that the result returned by the machine always be-
longs to the interval [−3, 4] and that, for any combination of inputs taken
in the correct ranges, the round-off error on the result is always less than
2.861022949 · 10−6 in absolute value.

– Fixed-point arithmetic:
Efixed =

(
[−3, 4], 5

)
Just like in the previous case, this value states that the result returned by
the machine always belongs to the interval [−3, 4]. In addition, it states that
5 bits may be needed for the integer part, somewhere in the computation.
Note that only 3 bits are required for the integer part of the result. However,
for instance, if c= 3.5 and d= 13.5 then c+d= 17 and ←◦ (17) = 5.

Given a value (x], µ]), the indicator µ] measures the quality of the imple-
mentation of a formula in floating-point or fixed-point arithmetics, assuming
that the inputs belong to certain ranges. In the next sections we introduce some
techniques enabling the programmer to improve these indicators.

4 Semi-Automatic Improvement of the Quality

In this section, we introduce new semantics to trace the operations of a formula
which mostly lower the quality of an implementation. This generalizes the se-
mantics of Section 3 which computes the indicator µ but do not indicate how it
is obtained. The semantics introduced here are said semi-automatic since they
detect the places where the quality is lost. This is an important help for the pro-
grammer who aims at improving a code. However this is not a fully automatic
method in the sense that no solution is given concerning how to enhance the
quality of the implementation.

The semantics introduced here were first introduced for the floating-point
arithmetic under the name of error series semantics [6, 9]. First of all, in order
to trace the sources of quality loss, labels are attached to the terms. A labeled
expression e` is then defined by:

e` ::= v` | e`1
1 +` e`2

2 | e
`1
1 −

` e`2
2 | e

`1
1 ×

` e`2
2 (16)

x]
S +`k y]

S
=“

↑◦ (x] + y]),
D
µ]

`1
+ ν]

`1
, . . . , µ]

`k
+ ν]

`k
+ ↓]◦ (x] + y]), . . . , µ]

`n
+ ν]

`n
, µ]

~ + ν]
~

E”
(18)

x]
S −

`k y]
S

=“
↑◦ (x] − y]),

D
µ]

`1
− ν]

`1
, . . . , µ]

`k
− ν]

`k
+ ↓◦](x] − y]), . . . , µ]

`n
− ν]

`n
, µ]

~ − ν]
~

E”
(19)

x]
S ×

`k y]
S =

`
↑◦ (x] × y]),

˙
x]ν]

`1
+ y]µ]

`1
, . . . ,

x]ν]
`k

+ y]µ]
`k

+ ↓]◦ (x] × y]), . . . ,

x]ν]
`n

+ y]µ]
`n

, µ]
~ν]

~ +
Pn

i=1

“Pn
j=1 µ]

`i
ν]

`j

” ¸´ (20)

Fig. 5. Abstract semantics for indicator series in the floating-point arithmetic.

x]
S +`k y]

S =
`
x] + y],

˙
max(µ]

`1
, ν]

`1
), . . . ,

max
`
µ]

`k
, ν]

`k
,←]

◦ (x] + y])
´
, . . . , max(µ]

`n
, ν]

`n
)
¸´ (21)

x]
S −

`k y]
S =

`
x] − y],

˙
max(µ]

`1
, ν]

`1
), . . . ,

max
`
µ]

`k
, ν]

`k
,←]

◦ (x] − y])
´
, . . . , max(µ]

`n
, ν]

`n
)
¸´ (22)

x]
S ×

`k y]
S =

`
x] × y],

˙
max(µ]

`1
, ν]

`1
), . . . ,

max
`
µ]

`k
, ν]

`k
,←]

◦ (x] × y])
´
, . . . , max(µ]

`n
, ν]

`n
)
¸´ (23)

Fig. 6. Abstract semantics for indicator series in the fixed-point arithmetic.

We introduce now the values of the semantics of indicator series. A value xS is
a pair

xS = (x, 〈µ`1 , . . . , µ`n , µ~〉) (17)

where x denotes the computer representation of the number xS and the tuple
〈µ`1 , . . . , µ`n , µ~〉 has one component per label `1, . . . , `n used in the expressions
plus one component reserved for a special label ~ used for the higher-order terms
introduced by non-linear computations.

Intuitively, in the case of the floating-point arithmetic, in the tuple of Equa-
tion (17), the term µ`k

represents the contribution to the global error computed
by the semantics of Section 3 of the error introduced by the control point `k. So,
in the concrete semantics, we may relate the measure µ to Equation (17) by the
property:

µ = µ~ +

nX
i=1

µ`i (24)

In other words, the error µ has been decomposed in a series or error terms which
indicate to the programmer which elementary error has been mostly propagated
in the computation and contributes mostly to the global error. The semantics

of elementary operations is given Figure 5 for the floating-point arithmetic. The
operands

x]
S = 〈x], µ]

`1
, . . . , µ]

`n
, µ]

~〉
and

y]
S = 〈y], ν]

`1
, . . . , ν]

`n
, ν]

~〉
are tuples of intervals representing abstract values. For an addition carried out
at Label `k, the computer representable result ↑]◦ (x] + y]) is calculated and the
indicator of each label is updated as follows: the new error related to a label
` 6= `k is the sum of the errors related to ` in the operands, i.e. µ]

` + ν]
` . Next,

the new error attached to `k is the sum of the errors on the operands plus the
new error due to the addition labeled `k itself. The subtraction is very similar
to the addition. For a product labeled `k, for each label ` 6= `k we compute the
propagation of the errors due to ` in the operands which yields x]ν]

` + y]µ]
`. For

Label `k, the new error ↓]◦ (x] × y]) introduced by the product is added to the
former term.

For the fixed-point arithmetic, the terms µ`1 . . . µ`n of the tuple of Equation
(17) are integers which indicate how many bits are needed to compute the integer
part of the sub-expression of root `i for any i, 1 ≤ i ≤ n. Here, the higher-order
term µ~ is always zero and we omit it in the formulas. The information collected
by this semantics directly shows to the programmer which parts of a formula
make the integer part of the fixed-point format grow. Again, this is useful to
modify the implementation of the formula but this technique do not indicate
how to achieve the enhancement.

The abstract semantics for the indicator series in fixed-point arithmetic is
given in Figure 6. Basically, for an operation labeled `k, the size of the integer
part is the maximum of the size of the operands and of the result. The other
terms of the tuple are updated by keeping the maximum of the operands. As
a result, the final tuple indicates the size of the integer parts of all the sub-
expressions.

For example, we consider that the following labels are attached to the oper-
ations of the expression of Equation (14):

E` = (a +`2 (b +`1 (c +`0 d)))×`3 e

Since we assume that there is no initial error on the data, the labels on the
values a, b, c, d and e are useless. The abstract indicator series semantics gives
the following results.

– Floating-point arithmetic:

E`
float =

`
[−3, 4],

˙
[−1.90734863281250 · 106, 1.90734863281250 · 106],
[−9.53674316406250 · 107, 9.53674316406250 · 107],
[−2.38418579101562 · 107, 2.38418579101563 · 107],
[−2.38418579101562 · 107, 2.38418579101563 · 107]

¸´ (25)

The errors can be represented by an histogram, as shown in Figure 7. The
labels `0 . . . `n are displayed on the x-axis and the measures are given by the

Fig. 7. Histogram for the indicator series of Equation (25): floating-point arithmetic.

y-axis. We can observe that the main errors are due to the first two additions
labeled `0 and `1. In the floating-point format, c and d do not have the same
exponent (in base 2 and their addition introduces an important round-off
error. The same phenomena arises at Point `1 but for smaller values. Clearly,
in order to enhance the accuracy of this computation, the programmer should
avoid to add c and d. In Section 5, we will introduce a way to transform this
expression into a more precise one.

– Fixed arithmetic:
E`

fixed =
(
[−3, 4],

〈
5, 4, 2, 3

〉)
(26)

E′`
fixed =

(
[−3, 4],

〈
5, 5, 5, 5

〉)
(27)

Here, two series are relevant. They are drawn in the histogram of Figure
8. The series of Equation (27) is based on the semantics of Figure 6. In
Equation (26), the terms max

(
µ]

`k
, ν]

`k
,←]

◦ (x] × y])
)

of equations (21) to
(23) are replaced by ←]

◦ (x] × y]). The observation of these series reveals
that the computation must be carried out using 5 bits because of the result
of the addition labeled `0. The other operations would require less bits. A
better implementation of this formula in fixed-point arithmetic is given in
Section 5.

5 Fully Automatic Improvement of the Quality

As discussed in Section 4, the indicator series provide information on where
the quality is lost but no way to enhance the implementation is given. In this

Fig. 8. Histogram for the indicator series of Equation (26) and Equation (27): fixed-
point arithmetic.

section, we introduce a program transformation which rewrites programs into
more accurate ones w.r.t. a given quality indicator. In practice, we are going
to apply this technique to the improvement of the precision of floating-point
expressions and to the reduction of the size of the integer part of fixed-point
numbers.

Basically, the program transformation works as follows:

(i) The operational semantics of Figure 3 is extended by the rule:

e ≡ e1 e1 → e2 e2 ≡ e′

e→ e′
(28)

where ≡ is an relation which identifies mathematically equivalent expres-
sions. For example, ≡ may identify expressions which are equal up to as-
sociativity, symmetry and distributivity of the elementary operations. Since
there are usually many expressions e′ equivalent to an expression e, the rule
of Equation (28) makes the operational semantics non-deterministic, in the
sense that from an expression e, many steps e→ e′ are possible, for syntac-
tically different e′.

(ii) To limit the combinatorial explosion of the number of traces due to ≡, we
introduce the set Expr]

k of abstract expressions of height at most k and the
abstraction function p.qk : Expr → Expr]. From a formal point of view,
Expr] and p.qk are defined in Figure 9. >η denotes any expression. Note
that, in abstract expressions, labels are attached to values (and only values).

η0 ::= v]` | >η

ηk ::= ηk−1 | ηk−1 + ηk−1 | ηk−1 × ηk−1

pv`qk = v` k ≥ 0

p>ηqk = >η k ≥ 0
pe1 + e2q0 = >η

pe1 × e2q0 = >η

pe1 + e2qk = pe1qk−1 + pe2qk−1 k ≥ 1

pe1 × e2qk = pe1qk−1 × pe2qk−1 k ≥ 1

Fig. 9. Abstract expressions and the abstraction function.

In the abstract semantics, a new label, generated dynamically, is attached
to the new values coming from the result of intermediary computations.

(iii) We extend the operational semantics by adding two environments to the
expressions: a first environment ρ] : Lab → ℘(Expr]) maps the labels at-
tached to values to abstract expressions. This indicates how the value has
been calculated. The second environment σ] : Expr] → V] maps abstract
expressions to abstract values with global quality indicators, as defined in
Section 3. The set V] denotes either the abstract domain of floating-point
numbers or fixed-point numbers with global quality indicator. σ(η) indicates
the range of values in which are evaluated the expressions abstracted by η
and encountered during the execution.

(iv) Finally, the program transformation consists of computing fully the abstract
semantics. This semantics is non-deterministic because of (i) but the abstract
expressions discussed in (ii) make the number of reductions polynomial.
Using the information collected by the environments described in (iii), the
result of each trace has a quality indicator. From the best quality indicator
we can build a new expression, mathematically equivalent to the original
one, by following actions attached to the reductions. These actions indicates
which operation has actually been performed at each reduction step.

The abstract semantics resulting from the ideas detailed in the enumeration
above is given in Figure 10. Its correctness is given, in the case of the floating-
point arithmetic, in [12]. In figure 10, ♦ denotes one of the elementary operations
+, − or × and σ] ∧ [η 7→ ν] denotes the environment σ] modified by σ](η) = ν.
In a transition (ρ], σ], e) A−→k (ρ′], σ′], e′), k denotes the user-defined parameter
corresponding to the level where abstract expressions are cut and A is an action
indicating which arithmetic operation has been performed at this step. Actions
are used to rebuild a new expression from a trace. The relation ≡k is the quotient
≡ / ∼k where ∼k is defined by e ∼k e′ ⇐⇒ peqk = pe′qk.

Applied to the expression of Equation (14), our transformation technique
yields the following results:

– Floating-point arithmetic: E is transformed into the new expression

E
′
float = ((a + b)× e) + ((c + d)× e) (32)

v] =
S

η1 ∈ ρ](`1)

η2 ∈ ρ](`2)

`
σ](η1)♦]σ](η2)

´
E =

S
η1 ∈ ρ](`1)

η2 ∈ ρ](`2)

pη1♦η2qk σ]′ = σ] V
η1 ∈ ρ](`1), η2 ∈ ρ](`2)

η = pη1♦η2qk

ν = σ](η1)♦σ](η2)

[η 7→ σ](η) ∪ ν]

〈ρ], σ], v`0
0 ♦v`1

1 〉 `=`1♦`2−−−−−→ k
〈ρ][` 7→ ρ](`) ∪ E], σ]′, v`〉

(29)

〈ρ], σ], e0〉
A−→k 〈ρ]′, σ]′, e2〉

〈ρ], σ], e0♦e1〉
A−→k 〈ρ]′, σ]′, e2♦e1〉

(30)

e ≡k e1 〈ρ], σ], e1〉
A−→k 〈ρ]′, σ]′, e2〉 e2 ≡k e3

〈ρ], σ], e0〉
A−→k 〈ρ]′, σ]′, e3〉

(31)

Fig. 10. The abstract semantics.

and the global quality indicator attached to Efloat is:

Efloat =
(
[−3, 4], [−2.384185791 · 10−6,−1.430511475 · 10−6]

)
(33)

Remark that, in Efloat, the variables a and b (resp. c and d) added first which
does not correspond to the original parsing. However, since (a+b) ≈ (c+d)
this writing reduces the round-off errors. In addition the multiplication has
been distributed. This avoids to multiply some of the round-off errors due
to the additions of the original formula.

– Fixed-point arithmetic:

E
′
fixed = e× ((a + d) + (b + c)) (34)

E′
fixed =

(
[−3, 4], 4

)
(35)

In E′, a and d are added first and the product is not distributed. These
choices make it possible to store all the intermediate values on 4 bits only
(in absolute value, the greatest number arising during the computation is
14).

Note that, while E′float and E′fixed are quite different, they have been obtained
automatically, from the same algorithm, based on the relation ≡k. The only
difference in the computation concerns the indicator used to estimate the quality
of the formulas. Both transformations enhance the quality of the implementation
w.r.t. to the chosen indicator.

6 Conclusion

In this article, we have generalized work on the enhancement of the implemen-
tation of floating-point expressions to fixed-point arithmetic. This is done in a
general framework, where quality indicators are attached to the values manip-
ulated by the computer. Our running example enables to compare the result of
all the analyses and transformations.

We believe that other quality indicators could be interesting to study, for
other kinds of fixed-point arithmetics but also, for example, for code obfuscation
[4], execution-time, memory-consumption, etc. If many indicators are relevant
for the same implementation, then multi-criteria enhancement techniques should
also be explored.

The error series abstract semantics is used in industrial contexts, to vali-
date safety-critical software. In the future, we aim at implementing a program
transformer able to handle large codes. This tool should work both in floating-
point and fixed-point arithmetics since there are many industrial needs in both
contexts.

References

1. ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic, std 754-1985
edition, 1985.

2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximations of fixed points. In
Principles of Programming Languages 4, pages 238–252. ACM Press, 1977.

3. P. Cousot and R. Cousot. Systematic design of program transformation frameworks
by abstract interpretation. In Conference Record of the Twentyninth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
178–190, Portland, Oregon, 2002. ACM Press, New York, NY.

4. M. Dalla Preda and R. Giacobazzi. Control code obfuscation by abstract interpre-
tation. In International Conference on Software Engineering and Formal Methods,
SEFM’05, pages 301–310. IEEE Computer Society Press, 2005.

5. D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

6. E. Goubault. Static analyses of the precision of floating-point operations. In Static
Analysis Symposium, SAS’01, number 2126 in Lecture Notes in Computer Science,
pages 234–259. Springer-Verlag, 2001.

7. E. Goubault, M. Martel, and S. Putot. Asserting the precision of floating-point
computations: a simple abstract interpreter. In 11th European Symposium on Pro-
gramming, ESOP’02, number 2305 in Lecture Notes in Computer Science, pages
209–212, 2002.

8. E. Goubault, M. Martel, and S. Putot. Some future challenges in the validation of
control systems. In Proceedings of the European Congress on Embedded Real Time
Software (ERTS’06), 2006.

9. M. Martel. Propagation of roundoff errors in finite precision computations: a
semantics approach. In 11th European Symposium on Programming, ESOP’02,
number 2305 in Lecture Notes in Computer Science, pages 194–208. Springer-
Verlag, 2002.

10. M. Martel. An overview of semantics for the validation of numerical programs.
In Verification, Model Checking and Abstract Interpretation, VMCAI’05, number
3385 in Lecture Notes in Computer Science, pages 59–77. Springer-Verlag, 2005.

11. M. Martel. Semantics of roundoff error propagation in finite precision calculations.
Journal of Higher Order and Symbolic Computation, 19:7–30, 2006.

12. M. Martel. Semantics-based transformation of arithmetic expressions. In Static
Analysis Symposium, SAS’07, number 4634 in Lecture Notes in Computer Science.
Springer-Verlag, 2007.

13. David Monniaux. The pitfalls of verifying floating-point computations. TOPLAS,
30(3), May 2008.

14. R. Rocher, D. Menard, N. Herve, and Sentieys. Fixed-point configurable hardware
components. EURASIP Journal on Embedded Systems (JES), 2006, 2006.

15. R. Rocher, D. Menard, O. Sentieys, and P. Scalart. Analytical accuracy evaluation
of fixed-point systems. In EUSIPCO’07Poznan, Pologne, 2007.

