
Neural Network Precision Tuning?

Arnault Ioualalen1 and Matthieu Martel1,2

1 Numalis
Cap Omega, Rond-point Benjamin Franklin

34960 Montpellier, France
2 Laboratoire de Mathématiques et Physique (LAMPS)

Université de Perpignan Via Domitia, France
ioualalen@numalis.com matthieu.martel@univ-perp.fr

Abstract. Minimizing the precision in which the neurons of a neural
network compute is a desirable objective to limit the resources needed
to execute it. This is specially important for neural networks used in
embedded systems. Unfortunately, neural networks are very sensitive to
the precision in which they have been trained and changing this preci-
sion generally degrades the quality of their answers. In this article, we
introduce a new technique to tune the precision of neural networks in
such a way that the optimized network computes in a lower precision
without modifying the quality of the outputs of more than a percentage
chosen by the user. From a technical point of view, we generate a system
of linear constraints among integer variables that we can solve by linear
programming. The solution to this system is the new precision of the
neurons. We present experimental results obtained by using our method.

Keywords: Formal methods, floating-point arithmetic, static analysis,
dynamic analysis, linear programming, numerical accuracy.

1 Introduction

Neural networks are more and more used in many domains, including critical
embedded systems in aeronautics, space, defense, automotive, etc. These neural
networks also become larger and larger while embedded systems still have limited
resources, mainly in terms of computing power and memory. As a consequence,
running large neural networks on embedded systems with limited resources in-
troduces several new challenges. While recent work has focused on safety [7, 9,
22, 21, 12] and security properties [14, 24], a different problem is addressed in
this article which concerns the accuracy of the computations. It is well-known
that neural networks are sensitive to the precision of the computations, or, in
other terms to the computer arithmetic used during their training and execution.
Indeed, a neural network working correctly in some computer arithmetic (e.g.

? This work is supported by La Region Occitanie under Grant GRAINE - Syfi.
https://www.laregion.fr

IEEE754 single precision [1]) may behave poorly if we run it in lower or even in
higher precision (e.g. in IEEE754 half or double precision).

We consider the problem of tuning the precision of an already trained neural
network, assumed to behave correctly at some precision, in such a way that,
after tuning, the network behaves almost like the original one while performing
its computations in lower precision. In this article, we focus on interpolator
networks, i.e. in networks computing mathematical functions. In this case, we
will say that the original and optimized networks behave almost identically if
they compute functions f and f̂ respectively, such that, for any input x, the
relative error between the numerical results computed by both networks is less
than some user defined constant δ:∣∣∣∣∣f(x)− f̂(x)

f(x)

∣∣∣∣∣ ≤ δ . (1)

This definition should be adapted for classifier networks without impacting the
rest of the techniques presented here. More precisely, in this case, we should
compare the original and optimized networks with respect to a performance
metric (recall, precision, F1-score, etc.)

Recently, a lot of work has been done concerning precision tuning of general
programs (without direct connection to neural networks), based on static anal-
ysis [2, 5] or dynamic analysis [13, 18, 20]. In this article, we adapt the approach
introduced in [15] to neural networks. We consider fully connected networks with
ReLU or tanh functions (see Section 2.1). We always assume that these networks
are already trained and work correctly in the sense that they have satisfying
performances in terms of interpolation or classification. We assume that each
neuron has its own precision for the computations. However, we assume that all
the computations performed inside the same neuron (summation and activation
function) use the same precision. Finally, we assume that the ranges of the inputs
and outputs of each neuron are given. Several techniques have been developed
recently to solve precisely this problem [7, 9], which is orthogonal to our. Cur-
rently, in our implementation, we compute these ranges by dynamic analysis even
if we aim at implementing static analysis techniques in (near) future work. We
generate a set of constraints describing the propagation of the errors throughout
the neural network. The strength of our approach is that we only generate lin-
ear constraints among integers (and only integers). These constraints are easy
to solve by standard tools. Optimizing the precision of the network under the
correctness constraint of Equation (1) then becomes a linear programming prob-
lem. We demonstrate the efficiency of our technique by showing how the size of
interpolator neural networks can be reduced in function of the parameter δ of
Equation (1).

The rest of this article is organized as follows. Preliminary notions and nota-
tions are introduced in Section 2. They concern neural networks and computer
arithmetic. The propagation of the roundoff errors throughout a neural network
is modeled in Section 3. The generation of constraints is introduced in Section
4 and experimental results are given in Section 5. Section 6 concludes.

W1 =

(
0.9 0.0 2.3
1.1 −0.7 0.0
0.1 −2.1 0.4

)
b1 =

(
0.1
0.2
0.3

)

W2 =

(
0.0 −0.3 1.1
1.0 0.2 0.0
−0.4 0.4 1.1

)
b2 =

(
−0.1
0.0
−0.1

)

Fig. 1. Example of a fully-connected two-layer network with three neurons by layer.

2 Preliminary Definitions

In this section, we introduce preliminary notions and notations concerning neural
networks and computer arithmetics. Section 2.1 is dedicated to neural networks
while Section 2.2 focuses on the floating-point arithmetic. Finally, Section 2.3
introduces precision tuning.

2.1 Neural Networks

In this article, a neural network is defined by means of affine transformations
defined by the grammar of Equation (2) in function of an input vector x ∈ Rm.

f(x) ::= ReLU(W · x+ b) | tanh(W · x+ b) | f1(f2(x)) (2)

The hyperbolic tangent is denoted tanh and a rectified linear unit (ReLU) acti-
vation function is defined by

ReLU(x) =
(

max(0, x1), . . . ,max(0, xm)
)T

. (3)

Following Equation (2), an affine function is either an affine map f : Rm →
Rn composed with a ReLU or tanh function or the composition of the former
elements. In general, an affine function with ReLU or tanh f : Rm → Rn defines
a fully connected layer of a neural network. The whole network is a sequence of `
layers, which corresponds to the composition of ` affine functions f1 ◦ f2 . . . ◦ f`.

An example of neural network is given in Figure 1. This fully connected
neural network is made of two layers, each layer containing three neurons. The
matrices W1 and W2 correspond to the first and second layers respectively and
b1 and b2 are the second members of each layer. For example, the first neuron
of the first layer computes 0.9x1 + 2.3x3 + 0.1 in function of the entry x ∈ R3.

Note that other operations, different from affine transformations and usually
performed by some layers of other kinds of neural networks, such as convolutional
layers or max pooling layers, can be reduced to affine transformations [9]. We
may then omit them in our work without loss of generality.

Format Name p e bits emin emax

Binary16 Half precision 11 5 −14 +15
Binary32 Single precision 24 8 −126 +127
Binary64 Double precision 53 11 −1122 +1223
Binary128 Quadruple precision 113 15 −16382 +16383

Fig. 2. Basic binary IEEE754 formats.

2.2 Computer Arithmetics

We introduce here some elements of floating-point arithmetic [1, 17]. First of all,
a floating-point number x in base β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s ·m · βe−p+1 (4)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the significand, 0 ≤ di < β,
0 ≤ i ≤ p− 1, p is the precision and e is the exponent, emin ≤ e ≤ emax.

A floating-point number x is normalized whenever d0 6= 0. The IEEE754
Standard defines binary formats (with β = 2) and decimal formats (with β = 10).
In this article, without loss of generality, we only consider normalized numbers
and we always assume that β = 2 (which is the most common case in practice).
The IEEE754 Standard also specifies a few values for p, emin and emax which
are summarized in Figure 2. Finally, special values also are defined: nan (Not a
Number) resulting from an invalid operation, ±∞ corresponding to overflows,
and +0 and −0 (signed zeros).

The IEEE754 Standard also defines five rounding modes for elementary op-
erations over floating-point numbers. These modes are towards −∞, towards
+∞, towards zero, to the nearest ties to even and to the nearest ties to away
and we write them ◦−∞, ◦+∞, ◦0, ◦∼e

and ◦∼a
, respectively. The semantics of

the elementary operations � ∈ {+, −, ×, ÷} is then defined by

f1 �◦ f2 = ◦ (f1 � f2) (5)

where ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼e , ◦∼a} denotes the rounding mode. Equation (5)
states that the result of a floating-point operation �◦ done with the rounding
mode ◦ returns what we would obtain by performing the exact operation � and
next rounding the result using ◦. The IEEE754 Standard also specifies how the
square root function must be rounded in a similar way to Equation (5) but does
not specify the roundoff of other functions like sin, log, etc.

We introduce hereafter two functions which compute the unit in the f irst
place and the unit in the last place of a floating-point number. These functions
are used further in this article to generate constraints encoding the way roundoff
errors are propagated throughout computations. The ufp of a number x is

ufp(x) = min
{
i ∈ N : 2i+1 > x

}
= blog2(x)c . (6)

The ulp of a floating-point number which significant has size p is defined by

ulp(x) = ufp(x)− p+ 1 . (7)

The ufp of a floating-point number corresponds to the binary exponent of its most
significant digit. Conversely, the ulp of a floating-point number corresponds to
the binary exponent of its least significant digit.

2.3 Precision Tuning

The method developed in this article aims at tuning the precision of neural net-
works. While this subject is new for neural networks, some work has been carried
out recently in this domain for usual computer programs and, in this section, we
introduce some background material about this domain. Precision tuning con-
sists of finding the least floating-point formats enabling a program to compute
some results with an accuracy requirement. Precision tuning allows compilers to
select the most appropriate formats (for example IEEE754 [1] half, single, double
or quadruple formats [1, 17]) for each variable. It is then possible to save mem-
ory, reduce CPU usage and use less bandwidth for communications whenever
distributed applications are concerned. So, the choice of the best floating-point
formats is an important compile-time optimization in many contexts. Precision
tuning is also of great interest for the fixed-point arithmetic [11] for which it is
important to determine data formats, for example in FPGAs [8, 16]. In mixed
precision, i.e. when every variable or intermediary result may have its own for-
mat, possibly different from the format of the other variables, this problem leads
to a combinatorial explosion.

Several approaches have been proposed to determine the best floating-point
formats as a function of the expected accuracy on the results. Darulova and
Kuncak use a forward static analysis to compute the propagation of errors [6].
If the computed bound on the accuracy satisfies the post-conditions then the
analysis is run again with a smaller format until the best format is found. Note
that in this approach, all the values have the same format (contrarily to our
framework where each control-point has its own format). While Darulova and
Kuncak develop their own static analysis, other static techniques [10, 23] could
be used to infer from the forward error propagation the suitable formats. This
approach has also been improved in [5]. Chiang et al. [2] have proposed a method
to allocate a precision to the terms of an arithmetic expression (only). They use
a formal analysis via Symbolic Taylor Expansions and error analysis based on
interval functions. In spite of our linear constraints, they solve a quadratically
constrained quadratic program to obtain annotations.

Other approaches rely on dynamic analysis. For instance, the Precimonious
tool tries to decrease the precision of variables and checks whether the accuracy
requirements are still fulfilled [18, 20]. Lam et al instrument binary codes in
order to modify their precision without modifying the source codes [13]. They
also propose a dynamic search method to identify the pieces of code where the
precision should be modified.

Another related research direction concerns the compile-time optimization
of programs in order to improve the accuracy of the floating-point computation
in function of given ranges for the inputs, without modifying the formats of the
numbers [4, 19].

3 Roundoff Error Modelling

In this section, we introduce some theoretical results concerning the numeri-
cal errors done inside a neural network. The error on the output of an affine
transformation function can be decomposed in two parts, the propagation of
the errors on the input vector and the roundoff errors arising in the computa-
tion of the affine function itself. We show in Proposition 2 that the numerical
error on the output of an affine transformation function can be expressed by
max(p+ µ, q+ ν) + 1 where p is related to the precision of the input vector, q is
the precision in which the affine transformation is computed and where µ and ν
are constants depending only on the neural networks, i.e. on W and b.

Following Equation (2), a fully connected layer of a neural network computes
an output vector u ∈ Rn in function of an input vector x ∈ Rm such that

u = f(x) = W · x+ b , (8)

for some n × m matrix W and for some vector b ∈ Rn (the case of ReLU and
tanh functions will be discussed at the end of Section 4.) Proposition 1 states
how to bound the numerical errors arising in Equation (8).

Proposition 1 Let us consider a fully connected layer of a neural network as
defined in Equation (8). Let pi, 1 ≤ i ≤ n, denote the precision of the ith neuron
of the layer. Let x̂ be an approximated input and e some absolute error bound
on the input, i.e. the exact input x satisfies |x − x̂| ≤ e . Then the networks
computes the output f(x̂) and, for all i, 1 ≤ i ≤ n, the absolute error erri on
the ith component of the output err = |f(x)− f(x̂)| on this output is bound by

erri ≤
m∑
j=1

Wij · ej + 2−pi ·

bi + (m+ 1) ·
m∑
j=1

|Wij · x̂j |

 . (9)

Proof. Using the notations of Equation (8), we have

ui =

m∑
j=1

Wij · xj + bi, 1 ≤ i ≤ n . (10)

Then the error err on the output is

err = W · e+ c (11)

where W · e is the propagation of the initial error on the input and c the error
introduced by the computation of u = f(x̂) in machine. We need to bound c.
Explicitely,

ui = f̂i(x̂) = Wi1 · x̂1 +Wi2 · x̂2 + . . .+Wim · x̂m + bi . (12)

First, the errors due to products in Equation (12) are bound by

err×(ui) ≤ |Wi1 · x̂1| · 2−pi + |Wi2 · x̂2| · 2−pi + . . .+ |Wim · x̂m| · 2−pi (13)

=
(
|Wi1 · x̂1|+ |Wi2 · x̂2|+ . . .+ |Wim · x̂m|

)
· 2−pi . (14)

Then the errors due to additions are bound by

err+(ui) ≤ 2−pi · (m− 1) ·
m∑
j=1

|Wij · x̂j |+ 2−pi · (bi +

m∑
j=1

|Wij · x̂j |) (15)

and, consequently,

err(ui) = err×(ui) + err+(ui) (16)

≤ 2−pi ·m ·
m∑
j=1

|Wij · x̂j |+ 2−pi ·

x̂i +

m∑
j=1

|Wij · x̂j |

 . (17)

Finally, by combining equations (11) and (17), we bound err the global error
vector on the output u by

erri ≤
m∑
j=1

Wij · ej + 2−pi ·

bi + (m+ 1) ·
m∑
j=1

|Wij · x̂j |

 . (18)

�

The next step consists of linearizing the equations in order to make them
easier to solve by a solver.

Proposition 2 Let us consider a fully connected layer of a neural network as
defined in Equation (8). Let pi, 1 ≤ i ≤ n, denote the precision of the ith neuron
of the layer. Let x̂ be an approximated input of precision q, i.e. the absolute error
e on the input, is bound by |xi − x̂i| ≤ ei < 2−qi , ∀i, 1 ≤ i ≤ n . Then the
accuracy of the ith output ui = fi(x̂) is max(µi + pi, νi + qi) + 1 with µi and νi
two constants defined by

µi = ufp

bi + (m+ 1) ·
m∑
j=1

|Wij · x̂j |

 νi = ufp

∣∣∣∣∣∣
m∑
j=1

Wij

∣∣∣∣∣∣
 ∀i, 1 ≤ i ≤ n .

Proof. Let us write

αi = bi + (m+ 1) ·
m∑
j=1

|Wij · x̂j | (19)

Indeed, the vector α is constant. Let e be the data error vector introduced in
Equation (11) and let q be the accuracy of the input, we have

qi = min
{
r ∈ N : ei ≤ 2r

}
(20)

Let

βi =

∣∣∣∣∣∣
m∑
j=1

Wij

∣∣∣∣∣∣ (21)

���

p
q max(�+p,�+q) + 1

q

q

Fig. 3. Accuracy propagation throughout a neuron as defined in Proposition 2.

Again, the βi, 1 ≤ i ≤ n are constants. Then∣∣∣∣∣∣
m∑
j=1

Wij · ej

∣∣∣∣∣∣ ≤ βi · 2qi (22)

Consequently,
err ≤ α · 2p + β · 2q (23)

Let µ = ufp(α) and ν = ufp(β). Equation (23) becomes

∀i, 1 ≤ i ≤ n, erri ≤ 2µi · 2pi + 2νi · 2qi = 2µi+pi + 2νi+qi (24)

≤ 2max(µi+pi,νi+qi)+1 (25)

�

The way Proposition 2 defines the propagation of a neuron is summarized in
Figure 3.

4 Constraint Generation

In this section, we describe our algorithm to tune the precision of a neural
network. We assume that the input network correctly computes a function f(x).

When we decrease this precision, the network computes a new function f̂(x).
Then we aim at finding the smallest precision such that the relative error∣∣∣∣∣f(x)− f̂(x)

f(x)

∣∣∣∣∣ < δ , (26)

for a given tolerance δ specified by the user.
We generate the constraints of Figure 4, explained hereafter. Let us consider

a neural network made of ` layers of n fully connected neurons. The variables
of the constraint system are Prec(W [k, i]), for 0 ≤ i < n, 0 ≤ k < ` and
Prec(X[k, i]), for 0 ≤ i < n, 0 ≤ k < ` + 1. They correspond respectively to
the accuracy used to compute inside the neurons and the accuracy of the output
of each neuron. Next the constraints depend on values computed a priori in

∀0 ≤ i < n, ∀0 ≤ k < `, 0 < Prec(X[k, i]) ≤ ComputedPrec(X[k, i]) (PB)

∀0 ≤ i < n, ∀0 ≤ k < `, 0 < Prec(W [k, i]) ≤ InitialPrec(W [k, i]) (IP)

∀0 ≤ i < n, Prec(Output[i]) ≤ Prec(X[`, i]) (PC)

∀0 ≤ i < n, ∀0 ≤ k < `, Prec(X[k + 1, i])− Prec(W [k, i]) ≤ µ− 1 (EW)

∀0 ≤ i < n, ∀0 ≤ k < `, Prec(X[k + 1, i])− Prec(X[k, i]) ≤ ν − 1 (EX)

Fig. 4. Constraints generated for precision optimization of neural networks.

function of the network and its input datasets. First, ∀0 ≤ i < n, ∀0 ≤ k < `,
InitialPrec(W [k, i]) is the initial precision of the ith neuron of the kth layer,
i.e. the precision used for this neuron in the original network before optimization.
Second, ∀0 ≤ i < n, Output[i] is the precision wanted by the user for the ith

neuron of the output of the last layer. This precision can be computed from the
parameter δ. Finally, ∀0 ≤ i < n, ∀0 ≤ k < ` + 1, ComputedPrec(X[k, i]) is
the precision of the output of the ith neuron of the layer k − 1. This precision
is computed by static or dynamic analysis by applying Proposition 2 to all the
neurons of the original network (with its original precision). Note that for all
0 ≤ i < n, X[0, i] corresponds to the input of the network. Our algorithm works
as follows.

1. Compute the forward accuracy of the network. For each neuron 0 ≤
i < n of the kth layer, 0 ≤ k < `, we compute the precision precX[k,i] of
the output X[k,i] in the worst case, for all input vectors of the considered
dataset D. We also compute at the same time, for each neuron, the minimum
and maximum values Xmin[k,i] and Xmax[k,i] of its output for D. In our
implementation, these computations are done by dynamic analysis but they
can be done by static analysis using the techniques of [7, 9].

2. Generate constraints for precision bounds. On one hand, the forward
accuracy computed at Step 1 gives an upper bound on the accuracy of the
output X[k,i] of each neuron such that 0 ≤ i < n, 0 ≤ k < `. On the other
hand, the precision desired by the user (thanks to the parameter δ) gives
a lower bound on the accuracy of the outputs of the last layer. For each
neuron, we generate the constraints (PB), (IP) and (PC) of Figure 4.

3. Generate constraints for backward precision conditions. Using Propo-
sition 2, we generate the constraints (EW) and (EC) of Figure 4. In function
of the precision of the outputs of the neurons of some layer k, these con-
straints set conditions on the precision of the neurons of layer k and on the
precision of the inputs of layer k. Hence, they propagate in a backward way
the constraints set by the user on the final outputs of the network by means
of the parameter δ.

The constraints of Figure 4 are linear constraints among integers. We find
an optimal solution the system by linear programming. This solution gives the
accuracy needed for each neuron for the δ parameter chosen by the user.

As mentioned in Section 2.1 at Equation (2), the dot product performed in
each neuron can be composed with another mathematical function, typically a
ReLU or tanh function. Indeed, the examples of Section 5 do use tanh functions.
While a ReLU does not impact the accuracy in the worst case (it just keeps the
input value or reset it to zero which does not make the accuracy decrease), this
is not the case for the tanh function. However, ∀x ∈ R, |tanh(x)| ≤ x and the
function only reduces the errors in absolute value. It is then possible to make the
approximation tanh(x) ≈ x without under-estimating the roundoff errors done
in the computations of the neurons. In other word, we may get rid of the tanh

function in the error analysis and constraint generation.
For neural networks combining dot products with other mathematical func-

tions, or to improve the error bounds on the results of the tanh function, a fine
error propagation can be computed by means of Taylor series developments. For
example, for a value x approximated by a floating-point number f with an error
e, i.e. x = f + e, we have

tanh(f + e) ≈ (f + e)− 1

3
(f + e) (27)

= (f + e)− 1

3

(
f3 + 3f2e+ 3fe2 + e3

)
(28)

=

(
f − 1

3
f3

)
+

(
e− f2e− fe2 − 1

3
e3
)

(29)

≈ tanh(f) +
(
tanh(e)− f2e− fe2

)
(30)

Consequently, the error propagated by the tanh function can be approximated
by tanh(e) − f2e − fe2. Similar reasonings can be done for other elementary
functions.

5 Experimental Results

In this section, we show on two representative neural networks how our precision
tuning method may optimize the precision. These networks originally work in
IEEE754 double precision. The prototype used for these experiments has been
implemented in Python 2.7 using the linprog function of the scipy library.

5.1 Neural Network Computing the Hyperbolic Sine

The first neural network we consider computes the hyperbolic sine of the point
(x, y). This network, displayed in Figure 5, is made of four layers containing 12,
8, 4 and 1 neurons respectively. The curve in the bottom left corner of Figure 5
displays the percentage of bits that we can save by our method in function of the
parameter δ which sets the relative error that we accept between the outputs of
the original and transformed networks. On this curve, 100% corresponds to the

Fig. 5. Top left: Interpolator network used to compute the hyperbolic sine function.
Top right: The hyperbolic sine function. Bottom left: Percentage of improvement in
bits, compared to the initial network in double precision. Bottom right: Measured
error between the original and optimized networks.

case where all the computations are done in double precision. As we can observe,
our technique makes it possible to save a significant amount of bits, depending
on δ. The curve in the bottom right corner of Figure 5 displays the measured
distance between the results of the original and optimized networks. This error
is compared to the worst accepted error defined by δ. We can see that the actual
error is always less than δ.

In Figure 6, we give more details on the results of our optimization for the
case δ = 10−6. The left part of the figure shows the actual number of bits needed
for each neuron in this case. Indeed, our method is able to save 54% of bits in
this case. In addition, in the right part of Figure 6, we display the best IEEE754
formats that we may choose according to the number of bits needed for each
neuron. For this example, 56% of the neurons can be set in single precision while

26

24

23 26

22 24

24 23 26

24 23 24 24

24 25 24

24 25 24

25 25

26 25

26

28

DOUBLE

SINGLE

SINGLE DOUBLE

SINGLE SINGLE

SINGLE SINGLE DOUBLE

SINGLE SINGLE SINGLE SINGLE

SINGLE DOUBLE SINGLE

SINGLE DOUBLE SINGLE

DOUBLE DOUBLE

DOUBLE DOUBLE

DOUBLE

DOUBLE

Fig. 6. Left: Number of bits needed for each neuron for δ = 10−6. Right: Best IEEE754
format which can be used for δ = 10−6.

guaranteeing that the error between the neural network working fully in double
precision and the optimized network will be less than δ = 10−6 for any input.

The mean execution time to generate and solve the constraints is 0.9 seconds
for δ = 10−6. This time does not change significantly is we take another value
for δ.

5.2 Neural Network Computing a Bump Function

In this section, we introduce a second network computing a function of a point
(x, y) displayed in Figure 7. Again, we compute the percentage of bits that we can
save by our method in function of the parameter δ. Again, our results, displayed
in Figure 7 show that our method makes it possible to save an important number
of bits (curve at the bottom left corner of Figure 7). As in Section 5.1, we also
measure the error between the original and optimized networks and compare it
to the theoretical error defined by the parameter δ (curve at the bottom right
corner of Figure 7).

The mean execution time for constraint generation and constraint solving is
25 seconds. Note that our implementation is not optimized and consider that all
the layers have the same number of neurons (90 in this example.)

6 Conclusion

In this article, we introduced a new method to tune the precision of the com-
putations done inside the neurons of a network in order to save memory while
ensuring that the network still answers correctly, compared to the original net-
work. Our method models the propagation of the roundoff errors through a set
of linear constraints among integers which can be solved by linear programming.
Experimental results show the efficiency of our method.

A first perspective is to test our method on larger, real-size neural networks.
This requires to improve our prototype to manage some implementation details.

90

Fig. 7. Top left: An interpolator network used to compute the bump function displayed
on the right of the top right corner of the figure. Bottom left: Percentage of improvement
in bits, compared to the initial network in double precision. Bottom right: Measured
error between the original and optimized networks.

We believe that our method will scale up as long as the linear programming
solver will scale up. If this is not enough, a solution would be to assign the
same precision to a group of neurons in order to reduce the number of equations
and variables in the constraint system. The choice of the best partition remains
an open question currently and additional work should be carried out in this
direction.

A second perspective is to extend our method to classifiers, i.e. to neural
networks recognizing patterns given as inputs. While most our our approach
can be reused for classifier, it would be necessary to formally define what is an
acceptable approximated output for the networks working with less precision. A
possibility would be to check that the original and optimized networks almost
always classify the inputs in the same way (in δ% of the cases, δ being chosen
by the user.) In particular, we aim at testing our method on neural networks
developed for standard recognition benchmarks such as CIFAR and MNIST.

A third perspective is to generate code for the fixed-point arithmetic [11].
Fixed-point arithmetic (or possibly integer arithmetic) are more and more used
to run neural networks, specially in embedded systems. To cope with the fixed-

point arithmetic, we need to adapt the error propagations equations of Section
3 without changing the general approach developed in this article.

A last perspective is to improve the method itself, by optimizing the equations
of Section 3. For example, some errors are over-estimated. In addition, all the
computations done inside the same neuron have the same accuracy and we could
improve this point. The way the computations are done inside neurons could
also be transformed by re-parsing of the computations in order ot improve their
accuracy [3, 4] and, consequently, to allow smaller formats.

References

1. ANSI/IEEE: IEEE Standard for Binary Floating-point Arithmetic (2008)
2. Chiang, W., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-

maric, Z.: Rigorous floating-point mixed-precision tuning. In: POPL. pp. 300–315.
ACM (2017)

3. Damouche, N., Martel, M.: Mixed precision tuning with salsa. In: Proceedings of
the 8th International Joint Conference on Pervasive and Embedded Computing
and Communication Systems, PECCS 2018. pp. 185–194. SciTePress (2018)

4. Damouche, N., Martel, M., Chapoutot, A.: Improving the numerical accu-
racy of programs by automatic transformation. STTT 19(4), 427–448 (2017),
https://doi.org/10.1007/s10009-016-0435-0

5. Darulova, E., Horn, E., Sharma, S.: Sound mixed-precision optimization with
rewriting. In: Proceedings of the 9th ACM/IEEE International Conference on
Cyber-Physical Systems, ICCPS. pp. 208–219. IEEE Computer Society / ACM
(2018)

6. Darulova, E., Kuncak, V.: Sound compilation of reals. In: POPL’14. pp. 235–248.
ACM (2014)

7. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: NASA Formal Methods - 10th International
Symposium, NFM. Lecture Notes in Computer Science, vol. 10811, pp. 121–138.
Springer (2018)

8. Gao, X., Bayliss, S., Constantinides, G.A.: SOAP: structural optimization of arith-
metic expressions for high-level synthesis. In: International Conference on Field-
Programmable Technology. pp. 112–119. IEEE (2013)

9. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP. pp. 3–18.
IEEE (2018)

10. Goubault, E.: Static analysis by abstract interpretation of numerical programs and
systems, and FLUCTUAT. In: SAS. LNCS, vol. 7935, pp. 1–3. Springer (2013)

11. Graphics, M.: Algorithmic C Datatypes, software version 2.6 edn. (2011),
http://www.mentor.com/esl/catapult/algorithmic

12. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: Computer Aided Verifi-
cation - 29th International Conference, CAV. Lecture Notes in Computer Science,
vol. 10426, pp. 97–117. Springer (2017)

13. Lam, M.O., Hollingsworth, J.K., de Supinski, B.R., LeGendre, M.P.: Automatically
adapting programs for mixed-precision floating-point computation. In: Supercom-
puting, ICS’13. pp. 369–378. ACM (2013)

14. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learn-
ing models resistant to adversarial attacks. In: 6th International Conference on
Learning Representations, ICLR 2018. OpenReview.net (2018)

15. Martel, M.: Floating-point format inference in mixed-precision. In: NFM. LNCS,
vol. 10227, pp. 230–246 (2017)

16. Martel, M., Najahi, A., Revy, G.: Code size and accuracy-aware synthesis of fixed-
point programs for matrix multiplication. In: Pervasive and Embedded Computing
and Communication Systems. pp. 204–214. SciTePress (2014)

17. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser Boston (2010)

18. Nguyen, C., Rubio-Gonzalez, C., Mehne, B., Sen, K., Demmel, J., Kahan, W.,
Iancu, C., Lavrijsen, W., Bailey, D.H., Hough, D.: Floating-point precision tuning
using blame analysis. In: Int. Conf. on Software Engineering (ICSE). ACM (2016)

19. P. Panchekha, A. Sanchez-Stern, J.R.W., Tatlock, Z.: Automatically improving
accuracy for floating point expressions. In: PLDI’15. pp. 1–11. ACM (2015)

20. Rubio-Gonzalez, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,
Bailey, D.H., Iancu, C., Hough, D.: Precimonious: tuning assistant for floating-
point precision. In: Int. Conf. for High Performance Computing, Networking, Stor-
age and Analysis. pp. 27:1–27:12. ACM (2013)

21. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018. pp. 10825–10836 (2018)

22. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 41:1–41:30 (2019)

23. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic taylor expansions. In: FM’15.
LNCS, vol. 9109, pp. 532–550. Springer (2015)

24. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th USENIX Security Symposium,
USENIX Security 2018. pp. 1599–1614. USENIX Association (2018)

