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Abstract

In this article we present a new approach for the computation of guar-
anteed solutions of ODEs, based on a classical Runge-Kutta method with
a precise error approximation.

The interest in validated methods for solving ODEs has recently in-
creased in many areas, such as state estimation [9] or validation of hybrid
systems [6]. In these applications, it is crucial to have guaranteed bounds
on the behaviour of the physical environment, which is usually described
by non-linear ODEs. Existing validation tools [7] mostly use interval based
algorithms to compute these bounds, like COSY Infinity [2] or VNODE
[10].

Our method has been developed in order to be used within a valida-
tion tool for hybrid systems, and thus focuses more on long-term stability
and accuracy than execution time, without however neglecting it. Each
computation step consists of two stages: a prediction stage where approx-
imate values for the solution are computed, and a correcting stage where
an overapproximation of the global error is calculated. The first stage uses
classical RK4 formulae [5] and multiprecision arithmetic in order to get an
accurate result. The second stage represents our main contribution. The
global error after n steps is expressed as a function of the error after n−1
steps and the step size h. An overapproximation of this error is then com-
puted and from this value we modify h in order to keep the global error
under user-defined bounds. This separation between the computation of
the next step, which uses multiprecision arithmetic, and the computation
of the global error using interval arithmetic makes it possible to avoid the
well known wrapping effect and then guarantees long term stability of the
method.

Basically, the error bound is overapproximated as follows:

|y(x + h)− ỹ(x + h)| ≤ η + χ + µ ≤ ε (1)

In Equation (1), y is the exact solution of the equation and ỹ the nu-
merical approximation computed without interval arithmetic. The global
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error (|y(x + h) − ỹ(x + h)|) can be split into three parts, based on re-
sults from [3],[8]: the error η introduced at each step, the propagation of
the precedent error χ and the numerical error µ. η and χ are expressed
according to the fourth and fifth derivative of the function we want to
approximate, and interval arithmetic is then used to compute an overap-
proximation of these errors as well as µ. However, interval arithmetic is
only used for verification and not in the computation of the next value. ε
is a user-defined parameter.

We have implemented our algorithm in a C++ library called GRKLib
for Guaranteed Runge-Kutta library. This library uses the formal deriva-
tion tool GiNaC [1] in order to compute the error functions and the MPFR
[4] library for multiprecision computations. The interval arithmetic library
used is Profil/BIAS. We have compared our results on classical problems
with results from VNODE. This comparison showed a better stability and
higher precision for our method, while being as fast as it.
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