
Numerical Accuracy Improvement by Interprocedural Program
Transformation

Nasrine DAMOUCHE
LAMPS Laboratory

Université de Perpignan
nasrine.damouche@univ-perp.fr

Matthieu MARTEL
LAMPS Laboratory

Université de Perpignan
matthieu.martel@univ-perp.fr

Alexandre CHAPOUTOT
U2IS, ENSTA ParisTech,
Université de Paris-Saclay

chapoutot@ensta.fr

ABSTRACT

Floating-point numbers are used to approximate the exact
real numbers in a wide range of domains like numerical sim-
ulations, embedded software, etc. However, floating-point
numbers are a finite approximation of real numbers. In prac-
tice, this approximation may introduce round-off errors and
this can lead to catastrophic results. To cope with this is-
sue, we have developed a tool which corrects partly these
round-off errors and which consequently improves the numer-
ical accuracy of computations by automatically transforming
programs in a source to source manner. Our transformation,
relies on static analysis by abstract interpretation and op-
erates on pieces of code with assignments, conditionals and
loops. In former work, we have focused on the intraprocedural
transformation of programs and, in this article, we introduce
the interprocedural transformation to improve accuracy.

CCS CONCEPTS

�General and reference → Verification; Formal meth-
ods; Compilers; Embedded systems; �Software and its
engineering → Software verification and validation;

KEYWORDS

Interprocedural program transformation, Numerical accuracy,
static analysis, Floating-point arithmetic

ACM Reference format:
Nasrine DAMOUCHE, Matthieu MARTEL, and Alexandre CHA-
POUTOT. 2016. Numerical Accuracy Improvement by Inter-

procedural Program Transformation. In Proceedings of ACM
Conference, Washington, DC, USA, July 2017 (Conference’17),

11 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Floating-point numbers, whose specification is given by the
IEEE754 Standard [1, 21], are more and more used in many
industrial applications, including critical embedded software.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

Conference’17, Washington, DC, USA

© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

However, floating-point arithmetic is prone to accuracy prob-
lems caused by the round-off errors. The approximation
becomes dangerous when accumulated errors cause damages
whose gravity varies depending on the context of the ap-
plication. We correct partly these errors by automatically
transforming programs in a source to source manner. Our
method not only transforms arithmetic expressions [18, 22]
but also pieces of code containing assignments, conditionals,
loops, etc.Basically, we generate large arithmetic expressions
corresponding to the computations of the original program
and further, we consider many expressions mathematically
equivalent to the original ones in order to, finally, choose a
more accurate one in polynomial time [7, 9].

There exist several methods for validating [3, 11, 12, 15, 24]
and improving [22] the accuracy of arithmetic expressions
in order to avoid numerical failures. In this article, as in
our previous work, we rely on static analysis by abstract
interpretation [4] to compute variable ranges and round-off
error bounds. We use a set of transformation rules for arith-
metic expressions and commands [7]. These rules, which are
applied in a deterministic order, allow one to obtain a more
accurate code among all the codes which are considered. We
have shown in previous work [7] that the numerical accuracy
of programs is significantly improved by our method, in most
cases, the worst error on the result, for all the considered
inputs is decreased of about 20%.

Since large codes necessarily contain several functions and
procedures, our transformation tool has to use interprocedu-
ral techniques [23] to adequately support such programs in
order to make them more accurate. The main contribution
of this article is to generalize our automatic transformation
techniques to handle interprocedural program transforma-
tions [23]. First, we define three rules to optimize the accu-
racy of the computations of programs: inlining of functions,
function specialization and lazy evaluation of the arguments.
Second, we present a heuristic which helps to select the best
transformation rule for each function.

This article is organized as follows. We introduce in Sec-
tion 2 the floating-point arithmetic, how to compute the
error bounds and we explain how to transform arithmetic
expressions and commands. In Section 3, we discuss the
different interprocedural transformation rules. In addition,
we introduce how to choose the interprocedural transforma-
tion rules that will be applied on the program to improve
the numerical accuracy of computations. Section 4 describes
the experimental results. Finally, we give some concluding
remarks and perspectives in Section 5.

2 BACKGROUND

In this section, we give some background concerning the
techniques used to achieve our program transformation. Sec-
tion 2.1 briefly describes the floating-point arithmetic. Sec-
tion 2.2 introduces how to compute the errors introduced
by floating-point computations with respect to exact com-
putations. Sections 2.3 and 2.5 respectively present the
transformation techniques used to optimize arithmetic ex-
pressions [18] and programs [7]. These transformations are
implemented in the tool that we use to optimize programs.

2.1 Floating-Point Arithmetic

Floating-point numbers are used to represent real numbers.
Because of their finite representation, round-off errors arise
during the computations which may cause damages in critical
contexts. The IEEE754 Standard formalizes a binary floating-
point number as a triplet of sign, mantissa and exponent.
We consider that a number x is written:

x = s · (d0.d1 . . . dp−1) · be = s ·m · be−p+1 , (1)

where, s is the sign ∈ {−1, 1}, b is the basis, b = 2, m is
the mantissa, m = d0.d1 . . . dp−1 with digits 0 ≤ di < b,
0 ≤ i ≤ p − 1, p is the precision and e is the exponent
e ∈ [emin, emax].

A floating-point number x is normalized whenever d0 6= 0.
Normalization avoids multiple representations of the same
number. IEEE754 Standard specifies some particular values
for p, emin and emax, as well as denormalized numbers which
are floating-point numbers with d0 = d1 = . . . = dk = 0,
k < p − 1 and e = emin. Denormalized numbers make
underflow gradual [14].

The IEEE754 Standard defines four rounding modes for
elementary operations over floating-point numbers. These
modes are towards −∞, towards +∞, towards zero and to
the nearest respectively denoted by ↑+∞, ↑−∞, ↑0 and ↑∼.
The semantics of the elementary operations specified by the
IEEE754 Standard is given by Equation (2).

x ~r y =↑r (x ∗ y) , with ↑r: R→ F (2)

where a floating-point operation, denoted by ~r, is computed
using the rounding mode r and ∗ ∈ {+,−,×,÷} an exact
operation. Obviously, the results of the computations are
not exact because of the round-off errors. This is why, we
use also the function ↓r: R → R that returns the round-off
error. We have ↓r (x) = x− ↑r (x).

2.2 Error Bound Computation

In order to compute the errors during the evaluation of
arithmetic expressions [20], we use values which are pairs
(x, µ) ∈ F × R ≡ E where x is the floating-point number
used by the machine and µ is the exact error attached to F,
i.e., the exact difference between the real and floating-point
numbers as defined in Section 2.1. For example, the real
number 1

3
is represented by the value v = (↑∼

(
1
3

)
, ↓∼

(
1
3

)
) =

(0.333333, (1
3
− 0.333333)). The semantics of the elementary

operations on E is defined in [20].

2 a

×

+

b

□

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Figure 1: APEG for the expression e =
(
(a+a)+b

)
×c.

Our tool uses an abstract semantics [4] based on E. The
abstract values are represented by a pair of intervals. The first
interval contains the range of the floating-point values of the
program and the second one contains the range of the errors
obtained by subtracting the floating-point values from the
exact ones. In the abstract value denoted by (x], µ]) ∈ E], we
have x] the interval corresponding to the range of the values
and µ] the interval of errors on x]. This value abstracts a set
of concrete values {(x, µ) : x ∈ x] and µ ∈ µ]} by intervals
in a component-wise way. We now introduce the semantics
of arithmetic expressions on E]. We approximate an interval
x] with real bounds by an interval based on floating-point
bounds, denoted by ↑] (x]). Here bounds are rounded to the
nearest, see Equation (3).

↑]∼ ([x, x]) = [↑∼ (x), ↑∼ (x)] . (3)

We denote by ↓] the function that abstracts the concrete
function ↓∼. It over-approximates the set of exact values
of the error ↓∼ (x) = x− ↑∼ (x). Every error associated
to x ∈ [x, x] is included in ↓] ([x, x]). We also have for a
rounding mode to the nearest

↓] ([x, x]) = [−y, y] with y =
1

2
ulp

(
max(|x|, |x|)

)
. (4)

Formally, the unit in the last place, denoted by ulp(x), consists
of the weight of the least significant digit of the floating-point
number x. Equations (5) and (6) give the semantics of the
addition and multiplication over E], for other operations
see [20]. If we sum two numbers, we must add errors on the
operands to the error produced by the round-off of the result.
When multiplying two numbers, the semantics is given by
the development of (x]1 + µ]

1) × (x]2 + µ]
2).

(x]1, µ
]
1)+(x]2, µ

]
2) =

(
↑] (x]1 +x

]
2), µ

]
1 +µ

]
2+ ↓

] (x]1 +x
]
2)
)
, (5)

(x]1, µ
]
1)× (x]2, µ

]
2) =

(
↑] (x]1 × x

]
2), x

]
2 × µ

]
1

+x]1 × µ
]
2 + µ]1 × µ

]
2+ ↓] (x]1 × x

]
2)
)
.

(6)

2.3 Accuracy Improvement of Expressions
We consider variables id ∈ V with V a finite set, constants
cst ∈ F with F the set of floating-point numbers and the
operators +, −, × and ÷. The syntax is

Expr 3 e ::= id | cst | e+ e | e− e | e× e | e÷ e. (7)

Here, we briefly present former work [18, 25] to semantically
transform [5] arithmetic expressions using Abstract Program
Expression Graph (APEG). This data structure remains in
polynomial size while dealing with an exponential number of
equivalent expressions.

p1 p2

+ p3

×

p1 p2

+ p3

×

p1 p3

×

+

p2 p3

×

p1 p2

✳ p3

✳

✳ (p1,p2,p3)

✳ (p1,…,pn,p'1,…,p'm)

✳ (p'1,…,p'm)✳ (p1,…, ,…,pn)

Figure 2: APEG construction by pattern matching.

An APEG is defined inductively as follows: (1) A value
v or a variable x is an APEG, (2) An expression p1 ∗ p2 is
an APEG, where p1 and p2 are APEGs and ∗ is a binary

operator, (3) A box ∗(p1, . . . , pn) is an APEG, where ∗ is

a commutative and associative operator and the pi,1≤i≤n,
are APEGs and (4) A non-empty set {p1, . . . , pn}, called
equivalence class, of APEGs is an APEG where pi,1≤i≤n, is
not a set of APEGs itself.

An example of APEG is given in Figure 1. When an equiv-
alence class (denoted by a dotted ellipse in Figure 1) contains
many APEGs p1, . . . , pn then one of the pi,1≤i≤n may be se-

lected in order to build an expression. A box ∗(p1, . . . , pn)

represents any parsing of the expression p1 ∗ . . .∗pn. From an
implementation point of view, when several equivalent expres-
sions share a common sub-expression, the latter is represented
only once in the APEG. Then APEGs provide a compact
representation of a set of equivalent expressions and make it
possible to represent in an unique structure many equivalent
expressions of very different shapes. For readability reasons,
in Figure 1, the leafs corresponding to the variables a, b and
c are duplicated while, in practice, they are defined only once
in the structure. The set A(p) of expressions contained inside
an APEG p is defined inductively:

• If p is a value v or a variable x then A(p) = {v} or
A(p) = {x}.

• If p is an expression p1 ∗ p2 then

A(p) =
⋃

e1∈A(p1), e2∈A(p2)

e1 ∗ e2

• If p is a box ∗(p1, . . . , pn) then A(p) contains all the

parsings of e1 ∗ . . .∗en, ∀e1 ∈ A(p1), . . . , en ∈ A(pn).
• If p is an equivalence class {p1, . . . , pn} then A(p) =⋃

1≤i≤nA(pi).

Example 2.1. For instance, the APEG p of Figure 1
represents all the following expressions:

A(p) =

(
(a + a) + b

)
× c ,

(
(a + b) + a

)
× c ,(

(b + a) + a
)
× c ,

(
(2× a) + b

)
× c ,

c×
(
(a + a) + b

)
, c×

(
(a + b) + a

)
,

c×
(
(b + a) + a

)
, c×

(
(2× a) + b

)
,

(a + a)× c + b× c , (2× a)× c + b× c ,
b× c + (a + a)× c , b× c + (2× a)× c

(8)

�

In their article on EPEGs, R. Tate et al. use rewriting
rules to extend the structure up to saturation [25]. In our

context, such rules would consist of performing some pattern
matching in an existing APEG p and then adding new nodes
in p, once a pattern has been recognized. For example, the
rules corresponding to distributivity and box construction
are given in Figure 2. An alternative technique for APEG
construction is to use dedicated algorithms. Such algorithms,
working in polynomial time, have been proposed in [18].

Once some APEG is built, we use an heuristic to find in
polynomial time a more accurate expression which minimize
the abstract error µ] using the semantics of equations (5)

and (6). We say that the abstract error µ]
1 = [µ]

1, µ
]
1] is less

than the abstract error µ]
2 = [µ]

2, µ
]
2] if

max(|µ]1|, |µ
]
1|) ≤ max(|µ]2|, |µ

]
2|) . (9)

2.4 Related Work

During the last ten years, several static analyses of the numer-
ical accuracy of floating-point computations have been intro-
duced. While these methods compute an over-approximation
of the worst error arising during the executions of a program,
they operate on final codes, during the verification phase
and not at implementation time. Static analyses based on
abstract interpretation [4, 5] have been proposed and imple-
mented in the Fluctuat tool [15, 16] which has been used
in several industrial contexts. A main advantage of this
method is that it enables one to bound safely all the errors
arising during a computation, for large ranges of inputs. It
also provides hints on the sources of errors, that is on the
operations which introduce the most important precision loss.
This latter information is of great interest to improve the
accuracy of the implementation. Darulova and Kuncak have
proposed a tool, Rosa, which uses a static analysis coupled
to a SMT solver to compute the propagation of errors [11].

Another related research axis concerns the compile-time
optimization of programs to improve the accuracy of the
floating-point computation in function of given ranges for the
inputs, without modifying the formats of the numbers [13].
The Sardana tool takes arithmetic expressions and optimize
them using a source-to-source transformation. Herbie op-
timizes the arithmetic expressions of Scala codes. While
Sardana uses a static analysis to select the best expression,
Herbie uses dynamic analysis (a set or random runs). A
comparison of these tools is given in [10].

2.5 Intraprocedural Transformation
In this section, we focus on the transformation of commands
which is done using a set of rewriting rules formally defined
in [7, 9]. Our language is made of assignments, conditionals,
loops and sequences of commands. The syntax is

c ::= id = e | c1 ; c2 | if e c1 c2 | whileΦ e do c | nop. (10)

The transformation relies on several hypotheses. First of all,
programs need to be in static single assignment form (SSA
form) [6]. Our tool automatically puts input programs in SSA
form before the transformation of commands for numerical
accuracy. The principle of this intermediary representation
is that every variable may be assigned only once in the

source code and must be assigned before its use. The next
assumption is that we optimize a reference variable (the
observed output of the program) chosen by the user. Our
transformation is defined by rules using states 〈c, δ, C, β〉where

• c is a command, as defined in Equation (10),
• δ is an environment δ : V → Expr which maps

variables to expressions. Intuitively, this environment
records the expressions assigned to variables in order
to inline them later on in larger expressions,

• C ∈ Ctx is a single hole context [17]. It records
the program englobing the current expression to be
transformed,

• β ⊆ V is a list of assigned variables that should not
be removed from the code. Initially, β = {ν}, i.e.,
the target variable ν must not be removed.

The environment δ is used to discard assignments from pro-
grams and to re-insert the expressions when the variables are
read, in order to build larger expressions. In addition, in the
following, ν ∈ V denotes the reference variable.

Let us consider first assignments. If (i) the variable v of
some assignment v = e does not exist in the domain of δ, if
(ii) v 6∈ β and if (iii) v 6= ν then we memorize e in δ and
we remove the assignment from the program. Otherwise, if
one of the conditions (i), (ii) or (iii) is not satisfied then
we rewrite this assignment by inlining the variables saved
in δ in the concerned expression and we call the tool based
on APEGs (see Section 2.3) to transform the resulting large
expression. Note that, when transforming programs by in-
lining expressions in variables, we get larger formulas. The
basic idea, in our implementation, when dealing with too
large expressions, is to create intermediary variables and to
assign to them the sub-expressions obtained by slicing the
global expression at a given level of the syntactic tree. The
last step consists of re-inserting these intermediary variables
into the main program.

Example 2.2. For example, let us consider the program
below in which three variables x, y and z are assigned. We
assume that z is the variable that we aim at optimizing and
a = 0.1, b = 0.01, c = 0.001 and d = 0.0001 are constants.

〈x = a+ b ; y = c+ d ; z = x+ y , δ, []〉
→z 〈nop ; y = c+ d ; z = x+ y, δ′ = δ[x 7→ a+ b], []〉
→z 〈nop ; nop ; z = x+ y, δ′′ = δ′[y 7→ c+ d], []〉
→z 〈nop ; nop ; z = ((d+ c) + b) + a, δ′′, []〉

(11)

In Equation (11), the environment δ and the context C are
initially empty and the list β contains the reference variable z.
We remove the variable x and memorize it in δ. So, the line
corresponding to the variable discarded is replaced by nop and
the new environment is δ = [x 7→ a+ b]. We then repeat the
same process on the variable y. For the last step, we may
not remove z because it is the reference variable. Instead, we
substitute, in z, x and y by their values in δ and we transform
the expression using the technique described in Section 2.3.

�

Our tool also transforms conditionals. If a certain condition
is always true or false, then we keep only the right branch,

otherwise, we transform both branches of the conditional.
When it is necessary, we re-inject variables that have been
discarded from the main program.

Example 2.3. Let us take another example to explain how
we transform conditionals.

x1 = a;

ifΦ(y3,y1,y2) x1 > 1.0 then

y1 = x1 + 2.0 + 1.0;

else
y2 = x1 − 2.0− 1.0;

ν = y3;

ifΦ(y3,y1,y2) x1 > 1.0 then

y1 = x1 + 2.0 + 1.0;

else
y2 = x1 − 2.0− 1.0;

ν = y3;

Initially, the formal environment δ and the context C are
empty and the black list β contains the target variable, ν. The
first step consists of avoiding the assignment x1 = a from the
program and storing it in δ. Then, we transform recursively
the new program. This program is semantically incorrect
since the test is undefined. So we re-inject the statement
x1 = a in the program and add x1 to the list β in order to
avoid an infinite loop in the transformation. Note that at
this step, the new environment δ′ is δ[x1 7→ a], β contains
the variable x1 and C = x1 = a; []. In this case, we add the
re-injected variable into the black list β to avoid its deletion
from the program in the future by applying the corresponding
rule. Now, δ is empty and β contains x1 and ν. Finally, we
transform both y1 and y2 by applying the partial evaluation
techniques and we return y3 that corresponds to y1 or y2

depending on the executed branch. At this stage, we have that
C is x1 = a ; ifΦ x1 > 3 then [] else []. �

For a sequence c1; c2, the first command c1 is transformed
into c′1 in the current environment δ, C, ν and β and a
new context C′ is built which inserts c′1 inside C. Then
c2 is transformed into c′2 using the context C[c′1; []], the
formal environments δ′ and the list β′ resulting from the
transformation of c1. Finally, we return 〈c′1 ; c′2, δ

′′, β′′〉.
Other transformations have been defined for while loops.

A first rule makes it possible to transform the body of the
loop assuming that the variables of the condition have not
been stored in δ. In this case, the body is optimized in the
context C[whileΦ e do []] where C is the context of the loop.
A second rule builds the list V = V ar(e) ∪ V ar(Φ) where
V ar(Φ) is the list of variables read and written in the Φ
nodes of the loop. The set V is used to achieve two tasks:
firstly, it is used to build a new command c′ corresponding
to the sequence of assignments that must be re-inserted.
Secondly, the variables of V are removed from the domain
of δ and added to β. The resulting command is obtained by
transforming c′;whileΦ e do c with δ′ and β ∪ V .

Remark. Note that, our tool takes as input ranges for
the free variables which are either introduced by the user
or coming from embedded sensors that transform physical
measurements into digital data values. In the rest of this
article, these inputs are assigned to global variables thanks to
the primitive assert at the beginning of each program.

f(u){c; return v} ∈ P

〈z = f(e), δ, C, β〉 →ϑ 〈u = e; c; z = v, δ, C, β〉
(F1− inlining)

γ = [[e]]]σ] σ] = [[C[c]]]]ι] g(){c′; return v}
f(u){c; return v} ∈ P 〈c, δ[u 7→ γ], [], {v}〉 →∗v 〈c′, δ, C, β〉

〈z = f(e), δ, C, β〉 →ϑ 〈z = g(), δ, C, β〉
(F2− specialization)

f(u){c; return v} ∈ P 〈c, δ[u 7→ e], [], {v}〉 →∗z 〈c′, δ, [], {v}〉 g(V){c′; return v} V = V ar(e)

〈z = f(e), δ, C, β〉 →ϑ 〈z = g(V), δ, C, β〉
(F3− laziness)

Figure 3: Transformation rules used to deal with functions.

3 FUNCTION TRANSFORMATION

For our function transformation, we start by applying the
interprocedural transformation rules given in Figure 3 and
then the intraprocedural transformation rules discussed in
Section 2.5. The general syntax of a program is

Prog 3 P ::= f | P f

f ::= f(u) { c; return v } . (12)

In Equation (12), f(u) { c; return v } defines a function
whose argument is u, whose body is the command c and
which returns v. Recall that a command c is defined by
Equation (10) and a program P is a sequence of functions.
For the sake of simplicity, in our formal definitions, we only
consider functions with one single argument. However, in our
implementation we support functions with many arguments.
The generalization is straightforward.

For a sake of simplicity, we write f(u) {c; return v}
instead of Type f(Type u) { c; return v} in Equation (12)
and Figure 3, with Type ∈ {Float,Double, . . . }. In addition,
the grammar of arithmetic expressions is extended to function
calls. Equation (7) becomes

Expr 3 e ::= id | cst | e+e | e−e | e×e | e÷e | f(e). (13)

We assume that any program p has a function named main
which is the first function called when executing p, and the
returned variable v is the target variable, i.e. v = ν.

Basically, our interprocedural program transformation fol-
lows the same objective as the intraprocedural one. We aim
at creating large arithmetic expressions which can be recom-
bined into more accurate ones as explained in Section 2.3.
The more the expressions are the more opportunities we have
to rewrite them. In the case of functions, we may either
inline the body of a function into the caller or evaluate lazily
the arguments, especially when they correspond to large ex-
pressions. We also use a specialization rule with respect to
the arguments of the function since this also improves the
accuracy in many contexts. In this section, we detail these
three transformation rules formally given in Figure 3.

3.1 Inlining Functions

The first rule (F1) of Figure 3 consists of inlining the body
of the function into the calling function. This makes possible

to create larger expressions in the caller. Then the new pro-
gram can be more optimized by applying the intraprocedural
transformation rules previously seen in Section 2.5.

Rule (F1) is used for a call z = f(e) in the body of the
calling function. We assume that f has one formal parame-
ter u, a body c and returns a value v. Rule (F1) states that
the body of the calling function is transformed as follows.
A new assignment is inserted in order to relate the formal
parameter u to the expression e corresponding to the expres-
sion of argument. Then the body c of the called function f is
inserted in the code of the caller, followed by a last assign-
ment z = v in order to assign the result of the function to
the relevant variable z. Note that, if f is a function of more
than one argument, then we process similarly by creating a
sequence u1 = e1, . . . , un = en of assignments before c.

Example 3.1. Let us consider the example of Figure 4 to
illustrate how Rule (F1) is applied. The original program con-
tains a call to a function callee(). The principle here is to
inline the body of the function callee() within the caller()

function in the source code. In the code of Figure 4, we
present the original program, the new program after applying
the interprocedural rules and then by using the intraprocedural
optimization, we obtain the final improved program. �

3.2 Specialization of Functions

The second transformation rule (F2) is mainly used when
we deal with a small number of calls to a large function
in the original program. The idea is to pass the values of
the function when the variability of the interval is small
(for example whenever it contains less than ω floating-point
numbers). By variability, we mean that the distance between
the lower bound and the upper bound of an interval is small.
If the variability of the interval i = [i, i] is smaller than a
parameter ω then, we apply (F2), we substitute the variable
u of the function f by the value γ and we return calleey
as mentioned in Figure 3. In practice, we choose ω = 24 ×
ulp(max(|i|, |i|) where ulp(x) is defined in Section 2.2. Note
that, we conserve the original function in our code for the
case when the condition on the variability is not satisfied.

Let us consider a call z = f(e) to a function f(u){c;
return v}. More precisely, let γ be the abstract value ob-
tained by abstract interpretation of the program for the

assert x = [100.0 , 200.0]

double caller (){

y = (x * x) + 15.0 ;

z = callee(y) ;

return z ; }

double callee(double u){

v = (55.123 * u * u * u) + (12.453

* u * u) + (239.078 * u) + 0.3 ;

return v ; }

assert x = [100.0 ,200.0]

double caller (){

y = (x * x) + 15.0 ;

u = y ;

v = (55.123 * u * u * u)

+ (12.453 * u * u)

+ (239.078 * u) + 0.3 ;

z = v ;

return z ; }

assert x = [100.0 , 200.0]

double caller (){

v = ((((239.078 * (15.0 + (x * x))) + 0.3)

+ ((12.452 * (15.0 + (x * x))) * (15.0

+ (x * x)))) + (((55.123 * (15.0 + (x * x)))

* (15.0 + (x * x))) * (15.0 + (x * x)))) ;

z = v ;

return z ; }

(1) (2) (3)

Figure 4: Example of program transformed by our tool. Left: The original program. Middle: The program
obtained using the interprocedural transformation rule (F1). Right: The optimized program obtained by
using the intraprocedural transformation rules.

assert a = [10.0 , 20.0]

double caller (){

x = 2.0 ; y = 3.0 * x + 9.0 ;

z = callee(y) ;

return z ; }

double callee(double u){

v = (a * a * u * u * u)

+ (a * u * u)

+ ((a * 0.5) * u) + 0.3 ;

return v ; }

assert a = [10.0, 20.0]

double caller (){

x = 2.0 ; y = 15.0 ;

z = callee_y () ;

return z ; }

double callee_y (){

v = (a * a * 15.0 * 15.0 * 15.0)

+ (a * 15.0 * 15.0)

+ ((a * 0.5) * 15.0) + 0.3 ;

return v ; }

assert a = [10.0 , 20.0]

double caller (){

x = 2.0 ; y = 15.0 ;

z = callee_y () ;

return z ; }

double callee_y (){

v = ((0.5 * (15.0 * a))

+ ((0.3 + ((a * 15.0) * 15.0))

+ ((((a * a) * 15.0) * 15.0) * 15.0))) ;

return v ; }

(1) (2) (3)

Figure 5: Example of program transformed by our tool. Left: The original program. Middle: The program
obtained using the interprocedural transformation rule (F2). Right: The optimized program obtained by
using the intraprocedural transformation rules.

assert a = [10.0 , 20.0]

double caller (){

x = 2.0 ; y = 15.0 * x - 1.0 ;

z = callee(y) ;

return z ; }

double callee(double u){

v = (a * a * u * u * u) + (a * u * u)

+ ((a * 0.5) * u) + 0.3 ;

return v ; }

(1)

assert a = [10.0 , 20.0]

double caller (){

x = 2.0 ; y = 15.0 * x - 1.0 ;

z = callee_lazy(x) ;

return z ; }

double callee_lazy(double x){

x = 2.0 ; u = 15.0 * x - 1.0 ;

v = (a * a * u * u * u) + (a * u * u) + ((a * 0.5) * u) + 0.3 ;

return v ; }

(2)

assert a = [10.0 , 20.0]

double caller (){

x = 2.0 ; y = 15.0 * x - 1.0 ;

z = callee_x () ;

return z ; }

double callee_x (){

x = 2.0 ;

v = (((a * ((15.0 * x - 1.0) * (15.0 * x - 1.0)))

+ (a * (a * (((15.0 * x - 1.0) * (15.0 * x - 1.0))

* (15.0 * x - 1.0))))) + (0.3 + ((a * 0.5)

* (15.0 * x - 1.0)))) ;

return v ; }

(3)

assert a = [10.0 , 20.0]

double caller (){

x = 2.0 ; y = 15.0 * x - 1.0 ;

z = callee_x () ;

return z ; }

double callee_x (){

x = 2.0 ;

v = (((((x * 15.0) - 1.0) * ((x * 15.0) - 1.0)) * a)

+ (((a * (a * ((((x * 15.0) - 1.0) * ((x * 15.0) - 1.0))

* ((x * 15.0) - 1.0)))) + ((a * 0.5) * ((x * 15.0) - 1.0))) + 0.3)) ;

return v ; }

(4)

Figure 6: Example of program transformed by our tool. Top left: The original program. Top right: The
program obtained using the interprocedural transformation rule (F3). Down left: The program obtained
using the interprocedural transformation rule (F2). Down right: The optimized program obtained by using
the intraprocedural transformation rules.

expression e, γ = [[e]]]σ] where σ] is the abstract environ-
ment given by the analysis of the program, i.e., the analysis
of c in the global context C, σ] = [[C[c]]]]ι] (ι] is a global envi-
ronment for the free variables of the program corresponding

to entries provided, i.e., by sensors). Let us assume that the
intraprocedural rules transform c into c’ assuming that the
constant expression γ is assigned to u during the transforma-
tion and that v is the target variable of this transformation.

Then we create a new function with zero argument g(){c’;
return v} and in the caller code, we substitute the assign-
ment z=g() to z = f(u). Note that this process is easily
generalizable to functions of more than one arguments. The
new black list β′ contains the variable z in addition to the
original target variable ν.

Example 3.2. Let us illustrate the application of Rule (F2)
on the code given in the left side of Figure 5. We substitute
the parameters of the function callee() by the parameters
of the calling function in the caller(). That means that
we substitute the value of u of the function callee() by
the value of y of the call function, so the new function is
named calleey() without parameters (see the code given in
the middle of Figure 5). We say that we have specialized
the function callee() with its effective parameters. Next,
we apply on the transformed program the intraprocedural
transformation rules of Section 2.5 to improve its accuracy
as shown in the right side of Figure 5. �

Remark. In our case, the functions are specialized ac-
cording to their call site, and they are left separated. In
other words, several calls to Rule (F2) for the same function
callee() yield several specialized versions of callee(). In
future work, we aim at merging them when they are too many.

3.3 Formal Expression Passing

The last rule (F3) consists of substituting the formal expres-
sion of the parameters of a given call function to the formal
parameters inside the body of the called function. It can be
seen as a lazy evaluation of the parameters in the caller. By
applying this rule, we obtain the new function calleelazy()

whose parameters are the variables of the expressions of
the call to the function. Then we rewrite the new function
calleelazy() by using the intraprocedural transformation
rules to optimize the accuracy of the computations.

Let f(u){c; return v} be a function of the program P

and z = f(e) a call to f in same calling function. In Rule
(F3) of Figure 3, c’ correspond to the code obtained by
intraprocedural transformation of c in a formal environment
mapping the formal parameter u to the formal expression e

at the call site. The variable to be optimized is the returned
variable v. This corresponds to the intraprocedural trans-
formation 〈c, δ[u 7→ e], [], {v}〉 →∗z 〈c′, δ, [], {v}〉. Let g be the
new function obtained by transformation. The parameters of
g are Var(e), the free variables of e. For functions of many
arguments, the same process is applied to each argument.

In addition, in the calling site z = f(e), we substitute
Var(e) to e in the arguments. For example, if Var(e) = x

the call becomes z = f(x).

Remark. Note that, in practice, we apply the inlining
Rule (F1) after the laziness Rule (F3).

Example 3.3. To understand the use of Rule (F3), we
take the example of Figure 6. We apply to it the third in-
terprocedural transformation rule presented in Figure 3. As
we observe, we have replaced the parameter u of the called
function callee() with the formal expression corresponding

to y in the main function. We create a new function named
calleelazy() with a new parameter x corresponding to the
variable z used in the expression assigned to y. Next, in this
example, Rule (F2) may be interestingly used after Rule (F3).
Its application gives the down left code of Figure 6. Finally,
we call the intraprocedural transformation tool to optimize the
intermediary program, in other words, the body of the new
function calleex(), as shown in the code of Figure 6. �

3.4 Choice of the Transformation Rule

In this section, we introduce our heuristic to choose the
interprocedural transformation rule that is applied to the
program in order to improve its numerical accuracy. We have
defined a function RuleSelector which selects the appropri-
ate rule to be used. This function includes a variable named
inlineAllowed that allows or not the inlining of the callee
function within the caller function. In other words, it allows
or not the use of the first interprocedural transformation rule
(F1). The inlineAllowed allows to inline the function f by
computing the expression

size(f)× numCall(f)
size(P)

≤ inlineFactor (14)

• size(f) is the number of lines of the function f,
• numCall(f) is the number of the calls to f in the

caller function,
• size(P) is the total lines number of the program P.

If the expression described by Equation (14) is less than a
defined coefficient inlineFactor then we inline the function,
otherwise the inlining is not allowed. In our case, the value of
inlineFactor is initialized to 5. This value may be increased
or decreased depending on the maximal code size of the
transformed program that the user is ready to accept.

Second, if the first interprocedural transformation rule
(F1) is not applied, we use either the specialization function
rule (F2) or the lazy evaluation rule (F3).

The choice between rules (F2) and (F3) is done as follows.
Recall that in Section 3.2, we have given conditions on when
to apply Rule (F2) : basically, it is used when the width of
the intervals of the values of the arguments are small enough
(in our implementation the intervals must contain at most
ω = 24 floating-point numbers). We apply Rule (F2) when
this condition is satisfied. Otherwise Rule (F3) is applied. In
our implementation, the application of Rule (F3) is always
followed by the application of Rule (F2) when the conditions
of this latter are satisfied (parameter ω). In each case, the
interprocedural transformation is followed by the application
of the intraprocedural rules to the body of all the functions.

4 EXPERIMENTS

In this section we discuss some experiments made with our
tool on the interprocedural program transformation. To per-
form our tests, we have taken a set of four examples presented
in previous work [7–9]: The first two examples are coming
from embedded systems (Odomerty and PID controller) while

assert sl = [0.52 ,0.53]

double main (){

x = 0.0 ; y = 0.0 ; arg = 0.0 ; delta_d = 0.0 ;

delta_dl = 0.0 ; delta_dr = 0.0 ; delta_theta = 0.0 ;

sr = 0.62831853071 ; t = 0.0; x = 0.0 ; y = 0.0 ;

inv_l = 0.1 ; c = 12.34 ; theta = -0.985 ;

while (t < 1.0) {

delta_dl = c * sl ; delta_dr = c * sr ;

delta_d = (delta_dl + delta_dr) * 0.5 ;

delta_theta = (delta_dr - delta_dl) * inv_l ;

arg = theta + (delta_theta * 0.5) ;

z = cos(arg) ; x = x + (delta_d * z) ;

q = sin(arg) ; y = y + (delta_d * q) ;

theta = theta + delta_theta ; t = t + 0.1 ;

} ; return x ;

}

double cos(double a){

res = 1.0 - (a * a * 0.5) + ((a * a * a * a) * 0.0416) ;

return res;

}

double sin(double u){

res = u - ((u * u * u) * 0.1666)

+ ((u * u * u * u * u) * 0.0083) ;

return res;

}

Figure 7: Original Odometry program.

the latter two examples are numerical algorithms (Newton-
Raphson and Runge-Kutta). Recall that the target variable
in each case is the variable returned by the main function.

We show in Table 1 the results obtained on our set of
examples. The errors given are the worst errors computed by
static analysis for all the possible entries given by the intervals
(using the order relation of Equation (9)). The error on the
original program is compared to the error on the programs
obtained by intraprocedural and interprocedural transfor-
mation. The intraprocedural transformation is applied on
each function separately. Note that for the intraprocedural
transformation, the numbers differ from the ones given in
previous articles because the programs have been rewritten
in several functions (the intraprocedural transformation is
then less efficient than on a single block).

In intraprocedural mode, the geometric mean improve-
ment is 25, 69%. In the interprocedural mode, the geometric
mean improvement is 33, 17%. The interprocedural rules are
then clearly useful. Note that, we have used the geometric
mean to compute the mean improvement of our benchmark
results because the arithmetic mean may lead to mistaken
conclusions.

4.1 Odometry

The first example consists in the Odometry program intro-
duced in [7]. At the difference, the program given in Figure 7
contains two functions cos and sin that compute respectively
the cosine and the sine using Taylor series expansions. Fig-
ure 8 gives the transformed program obtained by applying
our interprocedural transformation on the program given
in Figure 7. The accuracy of the transformed Odometry
program is improved by 29.39% when using intraprocedural
mode and by 39.98% while using interprocedural mode.

assert sl = [0.52 ,0.53]

double main() {

t = 0.0 ; theta = -0.985 ; y = 0.0 ; x = 0.0 ;

arg = 0.0 ; delta_theta = 0.0 ; delta_d = 0.0 ;

delta_dr = 0.0 ; delta_dl = 0.0 ;

while (t < 1.0) {

delta_dl = (12.34 * sl) ; delta_dr = 7.753450668961398 ;

delta_d = (0.5 * (delta_dl + delta_dr)) ;

delta_theta = (0.1 * (delta_dr - delta_dl)) ;

arg = (theta + (delta_theta * 0.5)) ;

z = cosTMP_1 () ; x = (x + (delta_d * z)) ;

q = sinTMP_2 () ; y = (y + (delta_d * q)) ;

theta = (theta + delta_theta) ; t = (t + 0.1) ;

} ; return x ;

}

double sinTMP_2 () {

res = ((((0.5 * delta_theta) + theta) - (0.1666 * (((0.5

* delta_theta) + theta) * (((0.5 * delta_theta) + theta)

* ((0.5 * delta_theta)+theta)))))+(((((0.0083 * (theta

+ (delta_theta * 0.5))) * (theta + (delta_theta * 0.5)))

* (theta + (delta_theta * 0.5))) * (theta + (delta_theta

* 0.5))) * (theta + (delta_theta * 0.5)))) ;

return res ;

}

double cosTMP_1 () {

res = ((1.0 - (0.5 * (((0.5 * delta_theta) + theta) * ((0.5

* delta_theta) + theta)))) + ((((0.0416 * (theta

+ (delta_theta * 0.5))) * (theta + (delta_theta * 0.5)))

* (theta + (delta_theta * 0.5))) * (theta

+ (delta_theta * 0.5)))) ;

return res ;

}

Figure 8: Transformed Odometry program.

double main (){

eold = 0.0 ; t = 0.0 ; i = 0.0 ; c = 5.0 ; kp = 9.4514 ;

kd = 2.8454 ; dt = 0.2 ; invdt = 5.0 ; m = 0.0 ;

while (t < 10.0) {

e = c - m ; p = kp * e ; i = integral(i,m,c,dt) ;

d = kd * invdt * (e - eold) ; r = p + i + d ;

eold = e ; m = m + r * 0.01 ; t = t + dt ;

} ; return m ;

}

double integral(double ii, double mm,double cc,double ddt){

ki = 0.69006 ; res = ii + (ki * ddt * (cc -mm)) ;

return res ;

}

Figure 9: Original PID program.

Recall from Section 2.2 that we compute a bound on
the worst error on the results for all the considered inputs
(here the intervals for sl and sr which correspond to the
speeds of the left and right wheel of the robot in radians per
second). This relative error is 39.98% smaller for our returned
variable x in the interprocedural transformed program.

4.2 PID Controller

The PID [2] is a widely used algorithm in embedded and
critical systems, like aeronautic and avionic systems. It keeps
a physical parameter (m) at a specific value known as the
setpoint (c). In other words, it tries to correct a measure by
maintaining it at a defined value. The original PID program
is given in Listing 9. The function integral computes the
integral of the error by the rectangle rule. The error being
the difference between the setpoint and the measure, the

double main() {

t = 0.0 ; m = 0.0 ; eold = 0.0 ; i = 0.0 ;

while (t < 10.) {

p = ((5.0 - m) * 9.4514) ; i = integral(i,m,5.0 ,0.2) ;

d = (((5.0 - m) - eold) * 14.226999999999997) ;

eold = (5.0 - m) ; m = (m + (0.01 * ((p + i) + d))) ;

t = (t + 0.2) ;

} ; return m ;

}

double integral(double ii,double mm,double cc ,double ddt) {

res = (ii + ((0.69006 * (cc - mm)) * ddt)) ; return res ; }

Figure 10: Transformed PID program.

double main (){

a = 0.0 ; a0 = 0.0 ;

while (a0 <= 3.0) {

u = f(a) ; w = f-prime(a) ; a_n = a - (u / w) ;

a = a_n ; a0 = a0 + 0.1 ;

} ; return a_n ;

}

double f(double x){

res = (x * x * x * x * x) - (10.0 * x * x * x * x)

+ (40.0 * x * x * x) - (80.0 * x * x)

+ (80.0 * x) - (32.0) ;

return res ;

}

double f-prime(double v){

res = (5.0 * v * v * v * v) - (40.0 *v * v * v)

+ (120.0 * v * v) - (160.0 * v) + (80.0) ;

return res ; }

Figure 11: Original Newton-Raphson’s method.

controller computes a correction based on the integral i and
derivative d of the error and also from a proportional error
term p. The weighted sum of these three terms contributes
to improve the reactivity, robustness and speed of the PID.

Figure 10 gives the transformed program obtained by ap-
plying our interprocedural transformation on the program
given in Figure 9. The accuracy of the transformed PID
program is improved by 13.24% if we use intraprocedural
mode and by 18.45% if we use interprocedural transformation
rules. It means that the relative error is 18.45% smaller for
our returned variable m in the interprocedural transformed
program. No improvement is obtained if we only apply the
intraprocedural rules to each function separately.

4.3 Newton-Raphson’s Method

In this section, we take the example of the Newton-Raphson
method [19]. It is a numerical method used to compute
the successive approximations of the zeros of a real-valued
function [7]. Note that this numerical method is often used
in embedded systems (with a bound number of iterations).
We have shown in former work that even if Newton-Raphson
method converges quickly in the reals, it may converge very
slowly in floating-point arithmetic when the target function
is evaluated inaccurately.

In Figure 11, our program contains two functions that com-
pute respectively the polynomial (x− 2)5 and its derivative.
The original program corresponding to this method is given
in Figure 11. By applying the interprocedural transformation,
the transformed program obtained is given in Figure 12. The

double main() {

a0 = 0.0 ; a = 0.0 ;

while (a0 <= 3.0) {

u = (-32.0 + ((a * 80.0) + (((a * (a * (a * 40.0)))

+ ((a * (a * (a * (a * a)))) - (a * (a * (10.0

* (a * a)))))) - (a * (a * 80.0))))) ;

w = (80.0 + (((a * (a * 120.0)) + ((5.0 * ((a * a)

* (a * a))) - (a * (40.0 * (a * a))))) - (a * 160.0)));

res = ((u / -w) + a) ; a = a_n ; a0 = (a0 + 0.1) ;

} ; return res ; }

Figure 12: Transformed Newton-Raphson’s method
program.

double main (){

x = 1.0; y = 1.0; z = 0.0; h = 0.1; t = 0.0; yn = 0.0;

coef = 0.16666667;

while (t < 1.0){

ff = f(x,y) ; k1 = h * ff ; p1 = p(x,h) ;

p2 = p(y,k1) ; p3 = f(p1,p2) ; k2 = h * p3 ;

q1 = p(y,k2) ; q2 = f(p1 ,q1) ; k3 = h * q2 ;

s1 = x + h ; s2 = y + k3 ; s3 = f(s1,s2) ; k4 = h * s3 ;

yn = y + (coef * h * (k1 + (2.0 * k2) + (2.0 * k3) + k4));

t = t + 0.1; y = yn;

}; return yn;

}

double f(double u, double v){

res = 2.0 * u + 3.0 * v ; return res ; }

double p(double xx, double hh){

res = xx + hh * 0.5 ; return res ; }

Figure 13: Original Runge-Kutta Method.

numerical accuracy of the transformed program of Newton-
Raphson method when applying the intraprocedural rules is
improved by 14.89% (see Table 1, otherwise, by using the
interprocedural rules, its accuracy is improved by 21.79%.
This significant improvement is mainly due to the correction
floating-point errors arising during the computations of the
developed form of polynomial which evaluate very poorly
close to the root.

double main() {

y = 1.0 ; t = 0.0 ; yn = 0.0 ;

while (t < 1.0){

ff = fTMP_3 () ; p1 = pTMP_4 () ;

p2 = pTMP_7 () ; p3 = fTMP_8 () ;

q1 = pTMP_11 () ; q2 = fTMP_12 () ;

s2 = (y + (0.1 * 5.9775)) ; s3 = fTMP_13 () ;

yn = ((((s3 * 0.1) + ((0.1 * (2.0 * 5.9775)) + ((0.1

* (2.0 * 5.85)) + (ff * 0.1)))) * 0.016666667) + y) ;

t = (t + 0.1) ; y = yn ;

} ; return yn ;

}

double fTMP_13 () { res = 6.993249999999997 ; return res ; }

double fTMP_12 () { res = 5.977499999999998 ; return res ; }

double pTMP_11 () { TMP_9 = 1.0 ; TMP_10 = 0.585 ;

res = (1.0 + (TMP_10 * 0.5)) ; return res ; }

double fTMP_8 () { res = 5.849999999999998 ; return res ; }

double pTMP_7 () { TMP_5 = 1.0 ; TMP_6 = 0.5 ;

res = (1.0 + (TMP_6 * 0.5)) ; return res ; }

double pTMP_4 () { res = 1.05 ; return res ; }

double fTMP_3 () { TMP_1 = 1.0 ; TMP_2 = 1.0 ;

res = (2.0 + 2.999999999999999) ; return res ; }

Figure 14: Transformed Runge-Kutta Method.

Initial absolute

error of

New absolute error after Percentage of New absolute error after Percentage of

Code original program intraprocedural transformation improvement interprocedural transformation improvement

Odometry 4.3972539271e−14 1.9179826428e−14 29.39% 1.5940113894e−14 39.98%

PID 5.3075447922e−8 3.1161972335e−10 13.24% 2.5645650587e−10 18.45%

Newton 3.2148412680e−14 1.5694371894e−14 14.89% 1.0744405055e−15 21.79%

RK4 1.2662168373e−15 2.6672691579e−16 75.22% 2.5951463231e−16 75.37%

Table 1: Comparison between the accuracy results of programs before and after optimization.

4.4 Runge-Kutta Method

In this section, we aim at transforming the fourth order
Runge-Kutta method in order to improve its accuracy using
our interprocedural rules presented in Section 3. We give in
Figure 13 the original program corresponding to this method
with functions. After interprocedural transformation, our
tool returns the program given in Figure 14 which accuracy
improvement is 75.37%. Note that, when using the intrapro-
cedural transformation, the transformed program is improved
by 75.22% as shown on Table 1.

5 CONCLUSION

In this article, we have presented an automatic method to
improve the numerical accuracy of computations of interpro-
cedural programs by automatic transformation. It is based
on a set of transformation rules which are defined in Figure 3
and which have been implemented in our tool. A heuristic
to choose between the rules (F1) to (F3) is also described
in Section 3.4. The experimental results applied on various
programs either coming from embedded systems or numerical
methods, show the efficiency of our transformation in terms
of accuracy improvement.

A significant interest would be to extend the current work
with a case study concerning a large size numerical applica-
tion. Another interesting perspective consists of extending
our work to optimize the high performance computing pro-
grams. In this direction, we aim at solving new numerical
accuracy problems like the order in an operation of a dis-
tributed system. We are also interested also in studying the
compromise between execution time, computation perfor-
mances, numerical accuracy and the convergence acceleration
of numerical methods. A key issue is to study the impact of
accuracy optimization on the convergence time of distributed
numerical algorithms like the ones used usually for high per-
formance computing. In addition, still about distributed
systems, an important issue concerns the reproducibility of
the results: different runs of the same application yield dif-
ferent results on different machines due to the variations in
the order of evaluation of the mathematical expression. We
aim at studying how our technique improves reproducibility.

REFERENCES
[1] ANSI/IEEE. IEEE Standard for Binary Floating-Point Arith-

metic. SIAM, 2008.
[2] K. J. Åström and T. Hagglund. PID Controllers, 2nd ed. Instru-

ment Society of America, 1995.
[3] J. Bertrane, P. Cousot, R. Cousot, F. Feret, L. Mauborgne,

A. Miné, and X. Rival. Static analysis by abstract interpre-
tation of embedded critical software. ACM SIGSOFT Software

Engineering Notes, 36(1):1–8, 2011.
[4] P. Cousot and R. Cousot. Abstract interpretation: A unified

lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL, pages 238–252, 1977.

[5] P. Cousout and R. Cousot. Systematic design of program transfor-
mation frameworks by abstract interpretation. In POPL, pages
178–190. ACM, 2002.

[6] R. Cytron and R. Gershbein. Efficient accomodation of may-alias
information in SSA form. In PLDI, pages 36–45. ACM, 1993.

[7] N. Damouche, M. Martel, and A. Chapoutot. Intra-procedural
optimization of the numerical accuracy of programs. In FMICS’15,
volume 9128 of LNCS, pages 31–46. Springer, 2015.

[8] N. Damouche, M. Martel, and A. Chapoutot. Data-types opti-
mization for floating-point formats by program transformation.
In CoDIT. IEEE, 2016.

[9] N. Damouche, M. Martel, and A. Chapoutot. Improving the
numerical accuracy of programs by automatic transformation.
STTT, 2016.

[10] N. Damouche, M. Martel, P. Panchekha, C. Qiu, A. Sanchez-
Stern, and Z. Tatlock. Toward a standard benchmark format
and suite for floating-point analysis. In NSV’16, LNCS. Springer,
2016.

[11] E. Darulova and V. Kuncak. Sound compilation of reals. In
POPL’14, pages 235–248. ACM, 2014.

[12] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and
V. Védrine. Towards an industrial use of FLUCTUAT on safety-
critical avionics software. In FMICS, volume 5825 of LNCS,
pages 53–69. Springer, 2009.

[13] P-L. Garoche, F. Howar, T. Kahsai, and X. Thirioux. Testing-
based compiler validation for synchronous languages. In NFM,
volume 8430 of LNCS, pages 246–251. Springer, 2014.

[14] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.

[15] E. Goubault. Static analysis by abstract interpretation of numer-
ical programs and systems, and FLUCTUAT. In SAS, volume
7935 of LNCS, pages 1–3. Springer, 2013.

[16] E. Goubault, M. Martel, and S. Putot. Some future challenges in
the validation of control systems. In ERTS, 2006.

[17] E. Hankin. Lambda Calculi A Guide For Computer Scientists.
Clarendon Press, Oxford, 1994.

[18] A. Ioualalen and M. Martel. A new abstract domain for the rep-
resentation of mathematically equivalent expressions. In SAS’12,
volume 7460 of LNCS, pages 75–93. Springer, 2012.

[19] Atkinson K. An Introduction to Numerical Analysis. J. Wiley
& Sons, 1989.

[20] M. Martel. Semantics of roundoff error propagation in finite
precision calculations. Higher-Order and Symbolic Computation,
19(1):7–30, 2006.

[21] J. M. Muller, N. Brisebarre, F. De Dinechin, C-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres.
Handbook of Floating-Point Arithmetic. Birkhäuser, 2010.

[22] J. R. Wilcox P. Panchekha, A. Sanchez-Stern and Z. Tatlock.
Automatically improving accuracy for floating point expressions.
In PLDI, pages 1–11. ACM, 2015.

[23] S. Sagiv, T. W. Reps, and S. Horwitz. Precise interprocedu-
ral dataflow analysis with applications to constant propagation.
Theoretical Computer Science, 167(1&2):131–170, 1996.

[24] A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalakrishnan.
Rigorous estimation of floating-point round-off errors with sym-
bolic taylor expansions. In FM, volume 9109 of LNCS, pages
532–550. Springer, 2015.

[25] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation:
A new approach to optimization. Logical Methods in Computer
Science, 7(1), 2011.

	Abstract
	1 Introduction
	2 Background
	2.1 Floating-Point Arithmetic
	2.2 Error Bound Computation
	2.3 Accuracy Improvement of Expressions
	2.4 Related Work
	2.5 Intraprocedural Transformation

	3 Function Transformation
	3.1 Inlining Functions
	3.2 Specialization of Functions
	3.3 Formal Expression Passing
	3.4 Choice of the Transformation Rule

	4 Experiments
	4.1 Odometry
	4.2 PID Controller
	4.3 Newton-Raphson's Method
	4.4 Runge-Kutta Method

	5 Conclusion
	References

