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Abstract—This article introduces RangeLab, a simple
tool to validate the accuracy of floating-point or fixed-point
computations. Given intervals for the inputs, RangeLab
computes the range of the outputs of simple functions
with conditionals and loops as well as a range for the
roundoff errors arising during the computation. Hence
the user not only obtains the range of the result of
the computation in the computer arithmetic but also a
bound on the difference between the computer result
and the result in infinite precision. RangeLab is based
on static analysis by abstract interpretation and, in this
article, we describe the techniques implemented in the tool.
In particular, RangeLab uses a hybrid numerical-formal
evaluation technique used to limit the wrapping effect in
interval computations.
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I. INTRODUCTION

RangeLab is a new interactive tool which automati-
cally computes the ranges of the numerical outputs of
simple programs and binds the roundoff errors arising
during floating-point or fixed-point computations. Typ-
ically, RangeLab takes as entry a simple code, with
arithmetic expressions, arrays, assignments and simple
control structures. Given some ranges for the inputs, the
system computes safe ranges for the outputs, accord-
ingly to the computer arithmetic (IEEE754 floating-point
arithmetic [1] or fixed-point arithmetic [2]). In addition,
the system computes a safe range of the roundoff error
on each result, i.e. a range for the difference between
the result in the computer arithmetic and the result in
infinite precision. Doing so, RangeLab makes it possible
to assert the accuracy of some computations described by
simple pieces of code. Related tools are mainly INTLAB
[3] for the classical interval arithmetic, Gappa [4] for
semi-automatic proofs and Fluctuat [5], [6] for the static
analysis of C codes.

In this article, we present the theoretical ideas im-
plemented in RangeLab. In summary, RangeLab uses
a variant of interval arithmetic called the arithmetic of
finite precision numbers with errors as well as techniques
of static analysis by abstract interpretation [7]. Thanks to
static analysis, RangeLab can perform interval-like com-
putations for codes containing conditional control struc-
tures. In this case, the tool returns an over-approximation
of the results in all the branches of the program. In ad-
dition, the static analysis of loops contain extrapolation
techniques which make it possible to compute an over-
approximation of the result of a while loop without
entirely executing it.

Our main contribution is technical: the tool itself.
At the theoretical level, our contributions in this article
are: (i) Refinements of the arithmetic of finite precision
numbers with errors [8] with efficiently implementable
division and square root operators. (ii) A new abstract
semantics, used in the static analysis to improve the
accuracy of interval computations. We use semi-formal
expressions which are formal expressions of limited
height. Formal computations are performed to simplify
expressions, limiting the wrapping effect. In addition, we
perform interval slicing, i.e. we decompose intervals in
partitions of sub-intervals to improve the accuracy of the
evaluation of the formal expressions.

II. OVERVIEW OF THE TOOL

In this section, we give an overview of what is
computed by RangeLab and of how the tool works. First
of all, RangeLab is an interactive system which displays
a prompt symbol in order to indicate that the tool is
waiting for commands (written in Matlab’s syntax).

-] 0.1+0.2
ans = float64: [2.999999999999999E-1,

3.000000000000001E-1]
error: [-4.857225732735059E-17,

4.857225732735060E-17]



-] a=2*ans
a = float64: [5.999999999999999E-1,

6.000000000000001E-1]
error: [-1.526556658859590E-16,

1.526556658859591E-16]
-] trapeze(0.25,50,100)
ans = float64: [6.557548333631875E1,

1.311509666726376E2]
error: [-1.456853305716057E-12,

1.457731336808933E-12]

In this article, we always assume that the floating-
point computations are rounded to the nearest. In the
above session, the system computes the numerical in-
tegral

∫ 50

0.25
g(x)dx of some function g : R → R

by means of a procedure trapeze implementing the
trapeze rule. The parameters require to truncate the
interval [0.25, 50] in 100 steps in order to compute the
result. The code of the trapeze method is stored in a
separate file trapeze.m whose content is:

function r = trapeze(a,b,n)
r=0.0; xa=a; h=(b-a)/n;
while xa<b,

xb = xa+h;
if xb>b, xb=b end;
r = r + ((g(xb)+g(xa))/2)*h;
xa=xa+h;

end

The code of the function g is stored in a file g.m:

function y = g(x)
y= [1.0,2.0]/(x*x*x*x)

The function g has an interval coefficient indicating
that g represents the family of functions G = {x 7→
a
x4 , 1 ≤ a ≤ 2}.

In the above session, RangeLab computes that the
result of trapeze(0.25,50.0,100) is

F = [6.557548333631875·101, 1.311509666726376·102]

with an error

E = [−1.4568 . . . · 10−12, 1.4577 . . . · 10−12]

This means that, for any function in G,
trapeze(0.25,50.0,100) returns a value in
F and that the numerical error on this result belongs to
E, assuming that the errors on the coefficients a is null.
We may claim several things from this execution:
• In IEEE754 double precision, the result of
trapeze(0.25,50.0,100) belongs to F
which is a wide interval (of width greater than 60).

• However, the roundoff error on the result of
trapeze(0.25,50.0,100), for any function
g ∈ G, belongs to E. This error is far smaller than
the width of F and can be acceptable depending on
the context.

• The error is significantly greater than the precision,
roundoff error arose during this execution. This is
because the integration of g by the trapeze methods
leads to the addition of values of different magni-
tudes since g is decreasing. We can confirm this
matter of fact by computing a larger integral, with
the same steps than in the former case:
-] trapeze(0.25,75.0,150)
ans = float64: [6.567656427626613E1,

1.313531285525323E2]
error: [-2.172235958601054E-12,

2.165505284708336E-12]

The error is greater while the magnitude of the
floating-point result is almost identical.

Let us also remark that RangeLab does not detect
the method error which affects the result of this com-
putation: trapeze(0.25,50.0,100) differs signif-
icantly from

∫ 50

0.25
g(x)dx even in infinite precision.

III. INSIDE RANGELAB

RangeLab uses an arithmetic in which error terms
are attached to the floating-point or fixed-point numbers.
They indicate a range for the roundoff error due to the
rounding of the exact value in the current rounding mode.
The exact error term being possibly not representable in
finite precision, we compute an over-approximation and
return an interval with bounds made of multiple precision
floating-point numbers. Indeed, the error interval may be
computed in an arbitrarily large precision since it aims
at binding a real number and, in practice, we use the
GMP multi-precision library.

Let x and y be to values represented in our arithmetic
by the pairs (fx, ex) and (fy, ey) where fx and fy are
the floating-point or fixed-point numbers approximating
x and y and ex and ey the error terms on both operands.
Let ◦(v) be the rounding of the value v in the current
rounding mode and let ε(v) be the roundoff error, i.e.
the error arising when rounding v into ◦(v). We have by
definition ε(v) = v−◦(v) and, in practice, when v is an
interval, we approximate ◦(v) by [− 1

2ulp(m), 1
2ulp(m)]

in floating-point arithmetic, or by [0, ulp(m)] in fixed-
point arithmetic, where m is the maximal bound of v, in
absolute value, and ulp is the function which computes
the unit in the last place of m [9]. The elementary
operations are defined in equations (1) to (5).

For an addition, the errors on the operands are added
to the error due to the roundoff of the result. For a
subtraction, the errors on the operands are subtracted.
The semantics of the multiplication comes from the
development of (fx + ex) × (fy + ey). Our definition
of the division comes from the fact that

x

y
=

fx + ex
fy

× 1

1 +
ey
fy

(6)
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x+ y =
(
◦ (fx + fy), ex + ey + ε(fx + fy)

)
(1)

x− y =
(
◦ (fx − fy), ex − ey + ε(fx − fy)

)
(2)

x× y =
(
◦ (fx × fy), fy × ex + fx × ey + ex × ey + ε(fx × fy)

)
(3)

x÷ y =
(
◦ (fx ÷ fy),

ex
fy

+
ex × ey

fy(fy + ey)
+ ε(fx ÷ fy)

)
(4)

√
x =

(
◦ (
√

fx),
√

(f)× (
e

2f
− e2

8f2
+

e3

16f3
) + ε(

√
fx)
)

(5)

and, using the power series development of 1
1+x , we

obtain
x

y
=

(
fx
fy

+
ex
fy

)(
1 +

q

1− q

)
. (7)

Finally, by fx
fy

= ◦( fxfy )+ε( fxfy ), we obtain Equation (4).
We mentioned earlier that a pair (f, e) made of a

floating or fixed-point number f and of an error e is
used to represent the real number r = f + e rounded
to f in the current computer format. In practice, this is
extended to intervals. By definition, the pair of intervals
([f, f ], [e, e]) represents the set of floating or fixed-point
numbers belonging to [f, f ] whose error with respect to
the real number they represent is in [e, e]:

([f, f ], [e, e])
={

(f, e) ∈ F ×R : f ∈ [f, f ], e ∈ [e, e]
} (8)

In Equation (8), F denotes the current format used to
represent the number in memory (a fixed or floating-
point format) and R denotes the set of real numbers.

RangeLab also performs symbolic computations as
long as the height height(e) of the resulting expression
e is less than or equal to an user-defined parameter
h (h = 5 by default in our tool). If height(e) > h
then we evaluate the deepest sub-expressions until we
obtain a new expression e′ of height h. The tool uses
some rewriting rules to generate a set E of formal
expressions mathematically equivalent to e and whose
sizes are limited to h. These rules correspond to formal
simplifications of expressions. All the expressions in
E are mathematically correct and we evaluate them
successively in the interval arithmetic to obtain a set V
of results. The values of V are intervals and they are all
correct evaluations of the initial expression e. However
the intervals of V do not have all the same width and
we return the smallest as result of our computation.

A second improvement, implemented in our tool,
consists of performing the evaluation of the formal
expressions of E by means of a dichotomic slicing of the
variables (one variable at the time): instead of evaluating

e with x = [a, b], we evaluate e with x = [a, a+b
2 ]

and then with x = [a+b
2 , b] before joining the partial

results. This is repeated recursively n times as far as it
improves the accuracy of the result. Note that only the
intervals for the floating-point or fixed-point numbers are
sliced, the error term being always the whole interval of
error. However, slicing has a strong incidence on the
computed errors since they depend on the ulp of the
fixed or floating-point values.

RangeLab uses standard abstract interpretation tech-
niques [7] to evaluate control structures such as con-
ditional or loops. Basically, the tool returns a superset
of the outputs that we would obtain with a standard
semantics by selecting scalar entries in the ranges of
the input intervals.

When a condition containing interval variables can
evaluate to both true and false, the then branch is evalu-
ated in an environment where the intervals corresponding
to the variables occurring in the condition are reduced to
the set of values which make the condition true and the
else branch is evaluated in the converse environment.
Then the values of the variables after execution of the
then and else branches are joined. When a condition
involves a floating-point or fixed-point value (f, e), only
f can be reduced, the error term e being left unchanged.

Concerning the while loops, the conditions are in-
terpreted as the conditions of the if statements and
the semantics of the while, in an initial environment
env0, is: (1) The entries are restricted to the sub-intervals
which make the condition true. This yields an environ-
ment env1 which is used to execute the first iteration
of the loop. (2) The environment env2 containing the
values of the variables at the end of the first iteration is
joined to env1 into a new environment env3. (3) Step (1)
is then repeated with the values of env3 as entries. The
process is repeated until env1 = env2, i.e. a fixed-point
is reached. Finally, the environment at the end of the
loop is defined by joining env0 and env3 where env0
and env3 denote the environments env0 and env3 in
which the values of the variables are restricted to the
sub-intervals which make the condition false. This is
illustrated by the example below.

-] a=0; x=0;
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-] while a<10, a=a+1; x=a end
-] a
ans = int32: 10
-] x
ans = int32: [1,10]

At the end of the loop, the value of a is intersected
with the values which invalidate the condition, we obtain
a= [0, 10]∩ [10,+∞[. Since x is not constrained by the
condition, its value at the end of the loop corresponds to
the value of the last assignment x=a. In addition, Range-
Lab implements a widening operator [7] to compute the
result of a while loop without entirely executing it.
This is as a conservative extrapolation of the result using
a kind of convergence acceleration technique. The results
are always correct but less accurate.

When floating-point or fixed-point computations are
performed inside a while loop, both the values and er-
ror terms are widened. However, as for the if construct,
the error terms are not constrained by the condition of the
loop. Let us consider the follwing unstable computation:

-] x=0.0; i=0;
-] while i<1000, i=i+1; x=x+0.1 end
-] x
ans = float64: [9.999999999999999E-2,+oo]

error: [-oo,+oo]

RangeLab states that the floating-point value of x at
the end of the loop is [9.999999999999999 · 10−2,+∞[
and that the roundoff error belongs to ] − ∞,+∞[.
This means that the difference between the computed
value and the value that we would obtain in infinite
precision is arbitrarily large. Let us consider now a stable
computation:

-] i=0; n=10; x=1.0; k=[0.8,0.9];
-] while i<n, i=i+1; x=x*k end
-] x
ans = float64: [0.000000000000000E-1,

9.000000000000001E-1]
error: [-1.776356839400250E-15,

1.776356839400251E-15]

This computation is stable, the value of x at the end
of the loop being kn with k ∈ [0.8, 0.9] and n ≥ 0. The
loop performs only n = 10 iterations, but a widening is
invoked because x is not constrained by the condition of
the loop. RangeLab computes that for any k ∈ [0.8, 0.9]
and for any 0 ≤ i ≤ 10, kn belongs to [0.0, 0.9]. The
system has extrapolated that ∪ni=0[0.8, 0.9]

i goes towards
[0.0, 0.9] as n goes towards +∞.

IV. EXPERIMENTAL RESULTS

Our first example is a Gaussian elimination procedure.
In interval arithmetic, when a function is expansive, as
it is the case here, the result is usually a large interval
and the user cannot know whether numerical errors arose
during the evaluation or not. It is only possible to state

that the error may be as large as the width of the resulting
interval, which is not quite informative. We use the
following function which also gives a flavor of the matrix
operations supported by our tool.

function [x] = gaussel(A,b)
N = max(size(A));
for j=2:N, % Gaussian elimination

for i=j:N,
m = A(i,j-1)/A(j-1,j-1);
A(i,:) = A(i,:) - A(j-1,:)*m;
b(i) = b(i) - m*b(j-1);

end
end
x = zeros(N,1); % Back substitution
x(N) = b(N)/A(N,N);
for j=N-1:-1:1,

x(j)=(b(j)-A(j,j+1:N)*x(j+1:N))/A(j,j)
end

We take the matrix A and vector b defined by:

A =

 u 0 u 0
0 v 0 v
0 0 u v
0 v u 0

 b =

 1
1
1
1


u = ([4.5454 · 10−8, 1.5454 · 10−7],

[−3.45 . . . · 10−23, 3.45 . . . · 10−23]

v = ([−1.7272 · 10−7,−5.4545 · 10−8],

[−3.57 . . . · 10−23, 3.57 . . . · 10−23])

RangeLab computes the following result.

-] gaussel(A,b)
!!! Scalar product computed using left
associativity.
ans =
float64[]: [-2.042984771573605E8

...
-1.673296672306825E8
,
2.109099300620420E9
...
1.172588832487311E7 ]

Errors: [-4.038941344594429E-6
...
-1.223143375128125E-7
,
4.038941344594430E-6
...
1.223143375128126E-7 ]

Firstly, the system warns about the scalar product done in
the back substitution because the roundoff errors arising
during this computation depend on the order of the
operations performed to compute the scalar product. This
order is not unique and the error returned by the tool is
correct only if the terms of the product are accumulated
in increasing order of the indices. Secondly, RangeLab
indicates that while the result of the computation belongs
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to a large interval (for instance the width of the interval is
about 2.3·109 in the first dimension), the numerical error
is always very small (always less than e = 4.04 · 10−6
in absolute value). This means that for any matrix with
floating-point coefficients taken in the intervals of A, the
numerical error on the result of the gaussian elimination
is always less than or equal to e in absolute value, which
corresponds to the error precision in the IEEE754 double
format. In other words, for any matrix with floating-
point coefficients taken in the intervals of A, the system
ensures that the roundoff error on the result of the
gaussian elimination are negligible. This result could not
be obtained by the usual interval arithmetic.

Our second example concerns the fixed-point arith-
metic. A fixed number [2] is made of an integer part i
and a fractional part f . It is written i f in RangeLab’s
syntax. For an input value, RangeLab always adjusts the
size of i to the minimal size needed to represent the
value. The size of the fractional part can be specified
by the user (a default size is used instead). Concerning
the result of an elementary operation, the integer part is
extended if needed, in order to avoid overflows, and the
size of the fractional part corresponds to the maximal
size of the fractional parts of the operands. Operations
are rounded towards zero and introduce roundoff errors,
just like floating-point numbers do. For example, the fol-
lowing command adds the values 1.1 and 1.2 represented
with a fractional part of 16 bits.

-] 1_1#16+1_2#16
ans = fixed(2,16): 2_299987792969

error: 9.155273438254952E-6

The tool states that the result is encoded on a 2-bits
integer part and on a 16-bits fractional part and that the
roundoff error on the result is 9.15 . . . · 10−6. RangeLab
also handles intervals of fixed-point numbers in the same
way than intervals of floating-points numbers.

Let us consider now the implementation of Horner’s
method for the evaluation of a polynomial. The function
below takes as arguments an array with the coefficients
of the polynomial p and the point x and computes p(x).

function y = horner(a,x)
y = a(1); n = max(size(a));
for i = 2:n, y = a(i) + x * y, end

If we set the default size of the fractions to 16, we obtain:

-] set frac 16
-] a = [[0_8,1_2] [-6_2,-5_8]

[10_8,11_2] [-6_2,5_8]];
-] horner(a,[0_0,4_0])
ans = fixed(6,16): [-62_199996948242,

50_39990234375]
error: [0.000000000000000E-1,

2.593994140625000E-3]

The system computes that the result is always repre-
sentable without overflow on 6 bits for the integer part

and that, with 16 bits of fraction the roundoff error on
the result of the evaluation is bounded by 2.59 · · · ·10−3.

V. CONCLUSION

In this article, we have given an overview of the fea-
tures of RangeLab, an interactive tool to detect numerical
errors in floating-point and fixed-point computations. We
have also given a survey of the techniques implemented
in the tool . RangeLab handles the elementary arithmetic
operations and we would like to add more advanced
features in the future but this raises some theoretical
issues. Firstly, in order to add the usual elementary
mathematical functions (sine, logarithms, etc.), the way
roundoff errors are propagated inside these functions
must be defined carefully. Secondly, we would like
solvers, for example for ODEs. However, in order to
estimate the error on the results, guaranteed integration
techniques should be employed [10], [11].
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