Topology of toroidal chaos. A first step.
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Introduction

There is little research about the topology of toroidal chaos mainly because a partition, which simplifies the description of unstable periodic orbits, Is rather hard
to define Iin this case. Moreover, toroidal surface have no boundary, a property required for constructing branched manifold [1]. Although topological analysis is
highly efficient in three-dimensional space, only a few examples of three-dimensional toroidal chaotic systems are known [2,3]. An Initial study of the LI system
took Into account its symmetry properties [4]: an intersection between the symmetry axis and the image attractor — a representation of the attractor where the
symmetry is modded out — leads to a non-trivial genus-three torus [5]. We choose a new method to define the Poincaré section for genus-one toroidal attractor,
by extending the bounding tori introduced by Tsankov and Gilmore [6]. We started to choose parameter values corresponding to a banded-chaotic attractor (not
too far after a period-doubling cascade). Using a coordinate transformation, we unfolded periodic orbits and computed linking numbers to establish the template
of the attractor.

LI system Poincaré section in the Li image system

Having extended the theory of bounding tori developed by Tsankov and
Gilmore [6] to system bounded by two tori, a Poincaré section was
defined between the two bounding tori (see below), that is, by

The LI system Is a three dimen-
sional system which produces
toroidal chaos :
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The chosen Poincaré
section, in grey, between
the two bounding tori.

For most of the parameter values,
trajectories are structured around a

non trivial genus-three torus [4] Oricinal attractor structured ;
(here exemplified for a = 4- riginal attractor structured around a

K—CE £f=20 e=065 d=016 non trivial genus-three torus. From this section, a bifurcation diagram was built with the angular variable
and c=11/6).
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The rotation symmetry around the
Z-axis IS modded out using a

coordinate transformation [5] : _ o
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Topology of the Image system Analysis on the Rdssler system

A coordinate transformation (a) enables to unfold unstable periodic orbits (b), here
extracted from the RaOssler attractor [6]. The coordinate transformation maps a torus
iInto a plane. Linking numbers are then computed In this (regular) plane and a third
coordinate (c). T T T e s v e

A first-return map was built on 6,. Then periodic orbits were
extracted and unfolded using a coordinate transformation (cf. an
example on the Radssler system in the right panel). Using a third
coordinate, linking numbers were computed for few couples of
periodic orbits.
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‘he template was encoded by a linking matrix (standard convention as introduced by
"ufillaro et al.). We obtained :
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. . . for the Rossl t lobal rotation for the L t
First-return map for a = 35.14  Unfolded unstable periodic orbit [—1 — ] or the Rossler system ana [1 1] +a global rotation for the LI system

Computed linking numbers can be synthetized in a template (a These matrices show that the two systems are topologically equivalent modulo the
branched manifold) of the attractor. rotation sign and a global torsion.
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