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ABSTRACT
Unmanned Aerial Vehicles (UAVs) applications have seen an
important increase in the last decade for both military and
civilian applications ranging from fire and high seas rescue
to military surveillance and target detection. While this
technology is now mature for a single UAV, new methods
are needed to operate UAVs in swarms, also referred to as
fleets. This work focuses on the mobility management of
one single autonomous swarm of UAVs which mission is to
cover a given area in order to collect information. Several
constraints are applied to the swarm to solve this problem
due to the military context.

First, the UAVs mobility must be as unpredictable as pos-
sible to prevent any UAV tracking. However the Ground
Control Station (GCS) operator(s) still needs to be able to
forecast the UAVs paths. Finally, the UAVs are autonomous
in order to guarantee the mission continuity in a hostile en-
vironment and the method must be distributed to ensure
fault-tolerance of the system. To solve this problem, we in-
troduce the Chaotic Ant Colony Optimization to Coverage
(CACOC) algorithm that combines an Ant Colony Opti-
mization approach (ACO) with a chaotic dynamical system.
CACOC permits to obtain a deterministic but unpredictable
system.

Its performance is compared to other state-of-the art mod-
els from the literature using several coverage-related metrics,
i.e. coverage rate, recent coverage and fairness. Numerical
results obtained by simulation underline the performance
of our CACOC method: a deterministic method with un-

.

predictable UAV trajectories that still ensures a high area
coverage.
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1. INTRODUCTION
The purpose of the ASIMUT project (Aid to SItuation

Management based on MUltimodal, MUltiUAVs, MUltilevel
acquisition Techniques), supported by the European Defence
Agency (EDA), is to improve the situation awareness of
an operator through area coverage and detection of threats
based on multi-sensor and multi-source data fusion (see [14]
for more details concerning this project). Information is de-
livered by heterogeneous swarms of autonomous Unmanned
Aerial Vehicles (UAVs) flying at different altitudes. One of
the objective of the ASIMUT project addressed here is area
surveillance that is ensured by means of a swarm of UAVs.
These UAVs collect data with their embedded sensors. It
should be noted that the operation takes place in a military
context.

Even if this paper is dedicated to UAVs, the problem re-
mains the same in the case of other unmanned vehicles like
ground, surface or underwater vehicles. To solve this prob-
lem two main techniques have been proposed : online and
offline path planning. Offline planning consists in precom-
puting the flight plan of the UAVs. The main asset of this
approach is that the UAVs trajectories are easily monitored
from the Ground Control Station (GCS). However, these
techniques are not adaptive to any change of configuration
during the flight: the scheduled path can be irrelevant by
the time the UAVs execute it. On the other hand, online
methods compute the trajectories of the UAVs at runtime.
The advantages and drawbacks of online methods are the
opposite of those of to offline systems. As a consequence,
in this paper we will propose a method that combines the
assets of both online and offline methods.



To build such a system, we choose to use the Ant Colony
Optimization method (ACO) introduced by
Dorigo [4]. We mainly rely on the work of Kuiper & Nadjm-
Tehrani [10] who adapted the ACO algorithm to the cover-
age problem for UAVs. The latter uses repulsive pheromones
to guide the UAVs over the area they have to cover. The
UAVs share a map of virtual pheromones that indicate re-
cently visited areas when high pheromone concentrations are
present. The UAVs then have a higher probability to move
to the least recently visited areas. The drawback of this
method is that it uses a random process which prevents any
offline path planing.

The purpose of our paper is to change the random process
of ACO system for a chaotic dynamical system. A chaotic
dynamic is the solution to a deterministic system with the
following properties. The solution is bounded and sensitive
to initial conditions, and consequently, unpredictable on a
long-term. We thus want to introduce these deterministic
but unpredictable solutions in our UAV mobility model1.
The recent paper [18] provides a detailed review of various
applications of chaotic dynamics for mobile robots. Various
systems are used to generate chaotic dynamics. In most
cases, the authors use the logistic map xn+1 = αxn(1 −
xn) to do it. A map is an iterative application that does
not diverge, neither converges to a point. This logistic map
converges to a dense set of points, between 0 and 1. This
map generates a fully distributed chaos when α = 4 and
it produces an output xn ∈ [0 : 1]. We assume that the
simplicity of this equation combined with an easy to use
output contributes to find this equation in many papers.
For instance Iba & Shimonishi [8] use it to define a chaotic
walk (in comparison to the random walk). The shape of
their process depends on the number of decimals they use
to compute the next iteration. This underlines how chaotic
processes are sensitive to the initial condition. Gong & Wang
[7] also introduce a chaotic process in an ACO algorithm by
testing various parameters for the logistic map to improve
the results of the algorithm. This map is also successfully
used with an Ant Colony Algorithm in order to find best
UAV path between threats ([20] or [19]).

However, Arroyo et al. [2] detail some of the properties of
the logistic map (including probability distributions) while
the parameter α is varied. They highlight that this equa-
tion exhibits some periodic behavior between the values of
the parameters used in [7]. The same ranges of parameters
are used by Li et al. [11] to solve the Traveling Salesman
Problem (TSP). This highlights the fact that the logistic
map works as a chaotic generator but for a small range of
parameter values. Thus the logistic map is a good start
but not sufficient to explore the capacities and richness of
chaotic dynamical systems. Some recent works have investi-
gated further the integration of chaotic systems in optimiza-
tion algorithms. Ahmadi et al. in [1] use Ordinary Differ-
ential Equations (ODE) systems to combine chaos and the
weed invasive algorithm. Also the authors of [6] use var-
ious chaotic maps (tent map, Lozi map, etc.) to explore
the performance of their firefly algorithm. We choose to use
the Rössler system [15] as a basic system to explore a com-
bination of chaotic behaviour from ODE with Ant Colony
Algorithm. This system is a reference in the literature as one
of the first ODE systems with a simple chaotic mechanism.

1In the frame of the ASIMUT project, a real deployment of
this model is planned on UAVs.

This work is organized as follows. We first introduce the
two main topics: ACO and chaos. The second part is ded-
icated to the description of the problem we solve and the
related work. In the third section, we present our models:
one only based on the Rössler system and then CACOC.
The following section contains our experimentations with
the metrics and the statistics we produce. We finally give a
conclusion and describe our future work.

2. PROBLEM DEFINITION AND
RELATED WORK

2.1 Problem definition
In this paper, we consider a problem similar to the one

defined by Kuiper and Nadjm-Tehrani [10]: a squared area
has to be covered by a swarm of UAVs. In addition to the
non predictability constraint induced by the military con-
text, the trajectories of the UAVs still need to be monitored
from the Ground Control Station (GCS). It is indeed manda-
tory for users of this type of system to know and anticipate
the positions of their UAVs. We remind that we also need to
have an adaptive method that is resilient to UAVs failures or
loss of UAV. As a consequence, the problem we address here
is at the edge of the path planning for UAVs and the au-
tonomous distributed coverage. This is not a path planning
problem because of the resilience constraint.

Because of the non predictability constraint, articles giv-
ing the optimized solution of a coverage problem [5] have not
been considered. Indeed, in such approaches the UAVs cov-
erage pattern is too explicit to be used in a military context.
In this section we present the algorithms from the literature
that have been compared to our method.

2.2 Related work
In this paper we address the following problem: an area

has to be visited regularly by UAVs in order to collect in-
formation. One of the constraints is that an observer should
not be able to anticipate the reconnaissance pattern of the
swarm. One solution proposed by Kuiper and Nadjm-Tehrani
[10] was to introduce a random process to prevent the UAVs
trajectories to be predicted. In the same article the authors
also proposed one ACO algorithm and compared it to the
random appraoch. These two models are presented in detail
hereinafter. We also present a third model from the liter-
ature, referred to as the chaotic walk introduced by Iba &
Shimonishi [8].

2.2.1 Model 1: Random-based mobility model [10]
The next direction of the UAV depends on the previous

one and is chosen using the probability rules given in Table
1. The initial state of each UAV is considered as “straight
ahead”.

Model 1 Probability of action

Last action Left Ahead Right

Left 0.70 0.30 0

Ahead 0.10 0.80 0.10

Right 0 0.70 0.30

Table 1: Random action table for Model 1.



2.2.2 Model 2: Pheromone-based mobility
model [10]

This method is a distributed pheromone repel mobility
model. While UAVs fly, they also deposit virtual pheromo-
nes that indicate recently visited geographical areas and that
evaporate over time. If there is pheromone in its neighbour-
hood, the UAV chooses its next direction using the proba-
bility indicated in Table 2. If there is no pheromone to guide
the UAV, it will use the random action of Model 1 based on
its previous action.

Probability of action

Left Ahead Right

pL = total−left
2×total

pA = total−ahead
2×total

pR = total−right
2×total

Table 2: Pheromone action table for Model 2. left
is the amount of pheromone sensed at the left of
the UAV, ahead is the amount of pheromone sensed
in front of the UAV and right is the amount of
pheromone sensed at the right of the UAV; finally
total = left+ ahead+ right.

2.2.3 Model 3: Chaotic walk [8]
The process described here was introduced by Iba & Shi-

monishi [8]. The authors name it chaotic walk because it
only uses the logistic map to determine the next angular
direction of an entity

xn+1 = 4xn(1− xn)

θn+1 = 2πxn+1 .

The logistic map makes it possible to obtain xn ∈ [0 : 1]. In
our case, UAVs have constant speed and the angle is given
by θn+1. Even if this method is not dedicated to coverage,
we implemented it to evaluate its performance as we did for
the previous models. As a consequence this simple chaotic
walk serves as a basic chaotic mobility model to compare
our more developed method.

3. UAV MOBILITY MODELS WITH
CHAOS

In the previously presented methods, ACO is a good can-
didate for the coverage problem because the algorithm is
designed in a distributed way. However, this algorithm uses
probabilities to let the UAV choose its next action; this im-
plies to have random variables for each step. On the other
hand the algorithm presented by Iba & Shimonishi using the
chaotic logistic map permits to make a chaotic walk. This
structure does not permit an efficient coverage but it satis-
fies the UAVs deterministic but unpredictable constraints.
This is one of the properties of chaotic dynamical systems.
In this section we propose two novel chaotic mobility mod-
els for UAV swarms to tackle the coverage problem: (1) the
first one is based on the Rössler system which is a differ-
ent chaotic system and (2) the second one is CACOC, that
combines the chaotic dynamics of the Rössler system with
an ACO approach.

In methods using meta-heuristics, random processes are
used to generate variability and explore the possible solu-
tions. In order to reproduce the simulations, the authors
mainly use a seed to generate pseudo-random numbers. These
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Figure 1: Rössler attractor solution to (1) for pa-
rameters a = 0.1775, b = 0.215 and c = 5.995 with the
Poincaré section (2).

pseudo-random numbers satisfy several properties such as
independence and non periodicity. Here the specific Models
1 and 2 require to use the previous values to decide on the
next value. We do not want to use chaotic process to gener-
ate pseudo-random numbers as it as been done by Lozi [12].
Instead, we will build our models using the properties of
chaotic dynamical systems. The fact that we can reproduce
our simulation, as it is possible with seeds, is also a plus
to compare the chaotic behavior versus randomness through
the performance of the models. These two approaches have
enough common points to be compared efficiently. In the
following section we will use the specificities of chaotic sys-
tems to build a model using a chaotic process instead of a
random one.

3.1 Model 4: Chaos using the Rössler system
The Rössler system [15] is a well known Ordinary Differ-

ential Equation (ODE) system
ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c)
(1)

producing chaotic dynamics. This system is a good can-
didate to evaluate the impact of chaos for our systems be-
cause it has been studied several times. This system is used
to validate tools and methods whose purpose is to analyse
chaotic systems. As detailed in [13] when a parameter of the
Rössler system is varied, it leads to several non equivalent
dynamics. For this three-dimensional system with the pa-
rameters a = 0.1775, b = 0.215 and c = 5.995 (attractor A
of [13]), the dynamics properties are clearly identified: the
chaotic mechanism is the classical horseshoe with stretching
and folding mechanisms as illustrated in Figure 1.

This system is a well documented source of various chaotic
regimes. The analysis of a chaotic attractor is performed
with a Poincaré section

P = {(yn, zn)|xn = 0, ẋn > 0} . (2)

This tool permits to discretize the continuous solution. From
the Poincaré section, a first return map details the dynam-
ical properties of the system. From the ODE system, we
obtain a map (Figure 2) ρn+1 = f(ρn) with ρn ∈ [0 : 1] is
the normalization of the value yn in the Poincaré section.
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Figure 2: First return map of the Rössler attractor
(Figure 1). This map is partitioned in three parts
indicating the UAV directions: L (left), A (ahead)
and R (right). Orbits of period 1 and 2 illustrate
patterns (AAAAA. . . ) and (ARARA. . . ).

The arrow indicates the map orientation from the center to
the outside, it corresponds of the orientation from 0 to 1.

The use of the Poincaré section permits to avoid consid-
ering what happens in the phase space (x, y, z). Instead we
only focus on one value after the passage of the solution
through the Poincaré section: ρn. This map details the dy-
namic properties of the Rössler system. Contrary to random
processes, the independence properties imply that any value
can be obtained at any iteration. Here the value is directly
obtained from the previous value. To obtain the direction
of the UAV from this return map, we build a partition:

• if ρn < 1/3 then direction is right;

• if 1/3 < ρn < 2/3 then direction is left;

• else the direction is ahead.

The shape of the first return map presented in Figure 2 in-
dicates the possible transitions of the UAVs. This figure dis-
play ρn+1 depending on ρn. It indicates the next position in
the Poincaré section depending on the previous one. Thus,
from a previous ahead direction (A), transition to A, left
(L) and right (R) are possible. From a previous L direction,
transition to A is the only possible transition. Finally, from
a previous R direction, only transition to L or A are pos-
sible. We intentionally remove the symmetry process (left
symmetric to right) introduced in the probabilities reparti-
tion proposed for Model 1. Based on some experiments that
we have conduced, we believe that this absence of symmetry
is in favor of a better coverage method.

To initialize the system, we choose an initial condition for
each UAV to solve the Rössler system. Giving non equal ini-
tial conditions lead to the same attractor as solution and to
the same first return map. However the points constituting
the return maps are not the same both in terms of values
and of order of appearance.

This model satisfies the problem constraints because it
uses a chaotic system to have unpredictable trajectories.
The GCS uses the same hardware and runs the exact same
programme as the UAVs. This ensures to obtain the same
decimals as the UAVs. As a consequence, operators in the
GCS can monitor the UAVs positions.

3.2 Model 5: Chaotic Ant Colony Optimi-zation
for Coverage (CACOC)

To satisfy all our problem constraints, we will combine the
pheromone method [10] with the previous Rössler model. In
the Model 2, random processes are used for any iteration.
We propose to replace the uses of random processes with
the first return map (ρn+1 = f(ρn)) as we do for Model 4.

In the first case, it happens when there is no pheromo-
ne to guide the UAV, Model 2 uses the random processes
defined in Model 1. In that case, we use the Model 4 to
explore a non visited area of our CACOC model (Model
5 ). If there are some pheromones in Model 2, the UAV
chooses its next direction with probabilities. For CACOC,
we propose to replace the random choice with the next value
in the return map using the probabilities repartition of Table
2 (pL, pA and pR).

• if ρn < pR then direction is right;

• if pR < ρn < pL then direction is left;

• else the direction is ahead.

Thus, the return map values are used to choose the next di-
rection for each step of CACOC model. The use of pheromo-
nes permits to have a system resilient to UAVs failure or
loss. If a UAV is out of the system, it will no more deposit
pheromones.

From the point of view of the GCS operator(s), UAVs are
monitored and if any failure is detected, the operator can re-
move the UAV in the simulator reproducing the UAVs posi-
tion from the GCS. This permits to maintain the monitoring
at the GCS while keeping unpredictable UAVs trajectories.

3.3 Orbits and regular structure
For our model, we use a solution of the Rössler system

that is an attractor (Figure 1). Unstable periodic orbits
structure attractor dynamics and topology. From the initial
condition, after the transitory time, the solution converge
to the attractor. It corresponds to a trajectory that evolves
in the attractor. In details, the trajectory visit the orbits
of the attractor. However these orbits are unstable and the
trajectory reach one of them for a moment before visiting
another one.

In Figure 2 we present two low period orbits: a period 1
and a period 2 orbits. We represent these two orbits in the
first return map but several others orbits can be founded for
this specific attractor [13]. We focus our attention to these
orbits because it explains two simple patterns for our UAVs.
First, the period 1 orbits is located in the area associated to
A. This means that when the system momentarily converge
close to the period 1 orbits, it corresponds to a long straight
trajectory. The period 2 orbits lead to an alternation of A
and R (ARARA. . . ) that corresponds to a half-turn for the
UAV. These state (close to the orbits) do not persist because,
these orbits are unstable. As a consequence, these regular
patterns sometimes occur for our UAVs and lead them to an
efficient unpredictable exploration pattern.



4. EXPERIMENTATIONS
In order to evaluate the performance of our proposed CA-

COC mobility model, we have compared it to the other four
models presented in the previous sections using simulations.
The setup used for the experiments, including the differ-
ent metrics, is presented in the next subsection, while the
experimental results are presented and analyzed in section
4.2.

4.1 Experimental setup
The simulation area is a 100 km × 100 km square, divided

in square cells of 1 km × 1 km. The UAVs have a constant
speed of 1km/s and they all depart from the base station
located in the middle of the bottom edge of the map, i.e.
position (50,0). At each simulation step, each UAV can do
one of the following three actions: (1) ahead: the UAV keeps
the same direction; (2) left: the UAV turns left with a 45◦

angle; (3) right: the UAV turns right with -45◦ angle. To
prevent collisions between our UAVs they all have non equal
flight altitudes [10].

Each of the five mobility models has been evaluated with
a swarm of 10 autonomous UAVs equipped with wireless
communication capabilities. We ran 30 independent simu-
lations of 7000 steps eachs, to obtain significant results and
applied statistical tests in order to compare the five models.
We want to perform unpaired multiple comparisons [9].

Parameter Name Parameter Value

Simulation area

Geographical Area 100 km × 100 km

Number of cells 100 × 100

UAV Autopilot

UAVs speed 1 km/min

Possible UAV actions ahead, 45◦ left, 45◦ right

Initial UAVs position middle of the bottom of the map

Experiments

Mobility models [1, 2, 3, 4, 5]

Number of UAVs 10

Simulation steps 7000

Independent runs 30

Table 3: Main experimental parameters.

In order to evaluate the performance of the different mod-
els in terms of area coverage and network connectivity, the
following four metrics from [3] have been used: coverage,
recent coverage ratio, fairness and connectivity. These are
detailed hereinafter.

Coverage.
The coverage is the portion of the total area visited dur-

ing the whole simulation. The environment is a 100 km by
100 km square area. The coverage value variates during the
whole simulation. To have a representative value of the cov-
erage, we choose to compare the coverage value after 5000
steps for each model. This indicates how efficient the mod-
els are to visit the total area. On the other side, we want
to evaluate the first steps of each model to compare their
initial behaviour while there is no guidelines for UAVs (e.g.
no pheromones for Models 2 and 5). We will extract the
slope of a linear regression (a× x) considering the 500 first
steps.

Recent coverage ratio.
This metric introduced in [3] represents the percentage

of coverage during the last 100 iterations. These 100 steps
correspond to the pheromones’ evaporation time. We ex-
clude the 100 first iterations of our simulation to compute
the mean value of the recent coverage.

Fairness.
The fairness measures if all cells are regularly and equally

scanned. This is computed by the standard deviation of
their respective number of scans [16]. To evaluate the fair-
ness during the whole simulation, we perform a linear re-
gression (a × x + b) using the last 6500 steps. This comes
to balance the coverage initial slope that only evaluates the
initial UAV trajectories. Here, the slope value is considered
as a measure to evaluate the fairness of the models without
this initialization part.

Connectivity.
Eventually, we evaluate the network connectivity of our

system by measuring the number of clusters of the swarm,
i.e. the number of connected components in the induced
graph. We compute the mean value of the connectivity dur-
ing the whole simulation to have a representative value for
the different mobility models.

4.2 Experimental results
We executed 30 runs for each model and we thus obtain a

distribution of 30 values for each algorithm. We produce five
statistical comparisons to evaluate our algorithms. These
tests also permit to assess how our method is statistically
relevant compared to the others.

Models 3, 4 and 5 are deterministic. As a consequence, if
we run them 30 times to compare the metrics, the solutions
will be the same. We only need to introduce variability to
perform statistical analysis of our models. For Models 4 and
5, we change the initial conditions of the Rössler system.
We add a random value ε ∈ [0 : 0.1] to obtain the following
initial conditions (x0, y0, z0) = (−0.4 + ε + 0.1 × Id, 0, 0)
where Id = 1, 2, . . . , 10 for the ten UAVs. This change is
enough to obtain non identical maps for each UAV due to
the sensitivity to the initial condition properties of chaotic
dynamical systems. We also use the ε + 0.1 × Id value as
initial condition value for the logistic map (Model 3).

For the five metrics studied in this work, the 30 results
do not follow normal distributions. As a consequence we
performed a Kruskal-Wallis rank sum test [9] to make an
unpaired multiple comparison of our model. All the results
for the five metrics hereinafter have statistically significant
differences with 95% confidence between any two algorithms
(i.e. with a p-value < 0.05 ). We explain the good results of
our Models 4 and 5 by the appearance of structured patterns
when dynamics evolve close to orbit (Section 3.3).

a. Coverage after 5000 iterations.
Table 4 presents the mean coverage values after 5000 steps,

together with the corresponding standard deviation, for all
five mobility models. The worst is Model 3 based on the
logistic map. Comparing the Kuiper and Nadjm-Tehrani
methods (Models 1 and 2), the pheromo-ne based model
is better. The most surprising result of this comparison
is that the proposed Rössler model only using chaos with-
out pheromone, is better than Models 1 and 2. Finally, the



combination of chaos and pheromone gives not only the best
result but also the smallest standard deviation.

Stat Model 1 Model 2 Model 3 Model 4 Model 5

Mean 0.9579 0.9841 0.5966 0.9875 0.9917

Std Dev 0.0171 0.0059 0.0759 0.0018 0.0015

Table 4: Coverage after 5000 iterations.

b. Slope a of the 500 first iterations.
This value evaluates the initialization phase of our system:

the transition from the initial group of UAVs to a swarm.
Here again Model 5 is better than Model 4, the latter being
better that the three other models, as can be seen from the
results in Table 5. The combination of the Rössler system
with pheromone also permits an efficient coverage at the
beginning of the simulation.

Stat Model 1 Model 2 Model 3 Model 4 Model 5

Mean 5.094e-04 6.775e-04 1.787e-04 7.344e-04 8.000e-04

Std Dev 3.752e-05 3.335e-05 1.960e-05 2.283e-05 2.176e-05

Table 5: Slope of the first 500 iterations.

c. Mean value of the recent coverage.
Regarding the recent coverage metrics, the 100 first iter-

ations are not taken into account because it is the maximal
time necessary to evaporate pheromones
dropped in an area. Also, the maximum value of this met-
rics is equal to an optimal solution where, during 100 it-
erations, the UAVs never deposit pheromone in the same
area. As a consequence the optimal recent coverage rate is
(10× 100)/(100× 100) = 0.1.

Stat Model 1 Model 2 Model 3 Model 4 Model 5

Mean 0.07673 0.09047 0.05100 0.08574 0.09221

Std Dev 3.904e-04 2.907e-04 7.238e-04 2.657e-04 2.260e-04

Table 6: Mean value of the recent coverage.

For this metrics, we found that Model 4 is less efficient
than the model using pheromones, as presented in Table 6.
This underlines the need of using the ACO algorithm to be
efficient for the coverage problem. These values also high-
light that the combination of pheromones and chaos (Model
5) is more efficient than Model 2.

d. Fairness slope a of the 6500 last iterations.
This metrics is used as a complement to our coverage met-

rics: we use the last 6500 iterations to remove the initial
steps. The obtained values are given in Table 7. In that
case, we obtain that the Model 5 is the best model with
the lower slope. Indeed, if the standard deviation grows
slower during a simulation, it indicates that cells are homo-
geneously visited during the whole simulation.

e. Mean value of connectivity.
This last metrics helps us to evaluate how UAVs are glob-

ally organised over the area. Here again Model 5 gives the
best result in terms of means but not for standard devia-
tion, as illustrated in Table 8. A larger value means that

Stat Model 1 Model 2 Model 3 Model 4 Model 5

Mean 4.000e-04 3.081e-04 7.809e-04 3.513e-04 3.034e-04

Std Dev 5.032e-05 4.134e-05 1.471e-04 2.618e-05 1.409e-05

Table 7: Fairness of the coverage.

the network is more disconnected which also indicates that
UAVs are well distributed over the area.

Stat Model 1 Model 2 Model 3 Model 4 Model 5

Mean 5.916 6.044 4.543 6.142 6.179

Std Dev 0.203 0.156 0.538 0.101 0.122

Table 8: Mean value of connectivity.

5. CONCLUSION AND PERSPECTIVES
In this article we have tackled the problem of area coverage

by a swarm UAVs in a military context. To this end, we have
proposed the Chaotic Ant Colony Optimization to Coverage
(CACOC) algorithm that combines an Ant Colony Opti-
mization approach (ACO) with a chaotic dynamical system,
to control the mobility of the UAVs. We have empirically
demonstrated that CACOC improves the system behaviour
of the Kuiper and Nadjm-Tehrani model when there is no
pheromone to guide the UAVs. This has been achieved by
replacing the random process with a deterministic chaotic
process based on a Rössler system. Moreover, the determin-
istic properties of such chaotic systems permit to monitor
the swarm behavior from the Ground Control Station while
the UAVs movements remain unpredictable to any observer.
CACOC has proven to efficiently tackle the coverage prob-
lem and satisfy its constraints.

To conclude on the impact of chaotic dynamics on our
system, we insist on the richness of ODE system compared
to chaotic maps as Lozi, Ikeda etc. For a given ODE sys-
tem, several chaotic mechanisms can be found by modifying
one parameter of the system. As a consequence, a parame-
ter of an ODE system can be considered as a parameter of
our model we can tune to optimize the solution. For future
work, we plan to compare the performance of our algorithm
varying a parameter of the Rössler system with the corre-
sponding partition of the return maps.

To conclude, the keystone of this paper is that we replace
transition probabilities with a chaotic return map detailing
the possible transitions. In our future work, we not only pro-
pose to use a chaotic process to increase the performance of
our system, but also to find the best chaotic mechanism (i.e.
return maps shape) that will make our system even more ef-
ficient. CACOC is an original approach that combines assets
of offline and online methods. The mobility is decided online
in a deterministic and reproducible way but the trajectories
of the UAVs remains unpredictable. The main advantage of
CACOC is that the position of the UAVs are known on the
ground without need of communication between the ground
and the UAVs.
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APPENDIX
A. EXPERIMENTAL PROBABILITIES OF

MODEL 4 (RÖSSLER SYSTEM)
For the reader interested in the probabilistic method in-

stead of the deterministic one with chaos, we provide here
the transition probabilities experimentally obtained from
Model 4 using the Rössler system. We remind the reader
that this model obtains better results than the probabilistic
method (Model 1) [10]. Even if it is not our main goal, we
are able to provide a better random model with a better
coverage rate (Tab. 9). In our future work, we will compare
this model to Model 4 to highlight differences between the
probabilistic approach and the chaotic based one.

Experimental (from Model 4) Probability of action
Last action Left Ahead Right
Left 0.0 1.0 0.0
Ahead 0.26 0.13 0.61
Right 0.60 0.40 0.0

Table 9: Experimental probabilities resulting from
the partition of the Rössler first return map.


