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Abstract— The recent advances in Unmanned Aerial Vehicles
(UAVs) technology permit to develop new usages for them. One
of the current challenges is to operate UAVs as an autonomous
swarm. In this domain we already proposed a new mobility
model using Ant Colony Algorithms combined with chaotic
dynamics (CACOC) to enhance the coverage of an area by
a swarm of UAVs. In this paper we propose to consider this
mobility model as waypoints for real UAVs. A control model of
the UAVs is deployed to test the efficiency of the coverage of an
area by the swarm. We have tested our approach in a realistic
robotics simulator (V-Rep) which is connected with ROS. We
compare the performance in terms of coverage using several
metrics to ensure that this mobility model is efficient for real
UAVs.

I. INTRODUCTION

The extensive operational space and sensing capabilities of
UAVs facilitate the exploration of areas. By using multiple
autonomously operating UAVs, the response time in search
and rescue scenarios within large areas can be reduced
significantly. However, the coverage of the surveyed area
is dependent on the coordination of the UAVs. A compre-
hensive overview on mechanisms to coordinate and control
such swarms are given in [1] and [2]. A detailed recent
state of art of the multi-UAV area exploration problem from
a perspective of optimization and artificial intelligence is
summarized in [3]. A typical approach which is covered in
all of these contributions is a cooperative area exploration
control with potential fields over a receding horizon. The
nature inspired interpretation of this method has been first in-
troduced in [4] as Ant Colony Optimization with pheromones
to coordinate a swarm of UAVs. This deterministic path
planning is in contrast to Dynamic Data Driven Application
Systems (DDDAS, see [5] for an example applied on swarm
of UAVs), where the UAVs are coordinated according to the
data they collected.

Kuiper and Nadjm-Tehrani [6] define an area exploration
scenario with ten UAVs with a pheromone based approach
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for a path planning. Their study compares a random mobility
model to a pheromone-based mobility model using few
metrics for coverage. Some recent studies propose to replace
the random part of such metaheuristics to increase their
performance. For instance Gandomi et al. use this principle
for Particle Swarm Optimization method [7] and Firefly
Algorithm [8]. Thus, in our previous work [9] we use chaotic
dynamic to create the Chaotic Ant Colony Optimization to
Coverage (CACOC) mobility model to increase the area cov-
erage performance of an Ant Colony Algorithm. However,
the high-level simulations used to evaluate CACOC do not
take into account the dynamics of a real quadrotor, which
are limiting the unpredictability of a real UAV trajectory.
To analyze the influence of the UAV dynamics, the major
contribution of this paper is a stochastic evaluation of the
performance of CACOC in terms of coverage in a realistic
scenario.

The structure of this use case exploration scenario is illus-
trated in Fig.1. The latter consists of ten UAV models which
are approximating a real quadrotor motion as introduced
in some of the authors previous work [10]. The positions
of these UAVs are controlled with model predictive control
(MPC) as presented in the same paper. The system dynamics
are equal to the MPC inherent prediction model which has
been applied in [10] on real quadrotors and therefore justifies
its representative usage. To finally assess the influence of
the closed-loop UAV dynamics, the waypoints which are
generated with the CACOC mobility model (indicated as
mobility model) are given as target position for the MPC
controlled UAV (indicated as control).

Fig. 1. Use case: implementation structure of area exploration scenario.



The remainder of this paper is organized as follows. We
first provide the description of the CACOC UAV mobility
model and the control model of the UAVs in section II.
Then the experimentation environment, the metrics used
to compare the model and statistical analysis are given in
section III. In section IV we finally provide conclusions and
future work perspectives that this approach provides.

II. UAV MOBILITY MODEL

This section first provides a brief description of the CA-
COC mobility model used to generate the waypoints to be
reached by the UAVs. The second part introduces the model
predictive position control (MPC) of a real quadrotor used
in the experiments.

A. CACOC mobility model (Waypoints)

In order to generate the different waypoints to be followed
by the UAVs, the CACOC mobility model introduced in one
of our previous works [9] has been used. In a high level
simulation process, CACOC is used to describe the mobility
of a swarm of ten UAVs. Its performance was compared to
existing models using random, chaos and classical ant colony
optimization algorithms [9]. We empirically demonstrated
that CACOC permits an increase of performance for several
aspects of coverage (overall coverage, recent coverage and
fairness of the coverage).

This section provides a brief description of this mobility
model, for more details the interested reader should refer to
[9]. CACOC is based on the idea that the chaotic behavior
of a dynamical system can enhance the performance of
optimization algorithms. More precisely, CACOC replaces
the random parts of the ant colony optimization algorithm
[11] by a chaotic behavior in such a way that the explo-
ration capabilities of the UAV swarm is improved. The CA-
COC performance on the coverage problem was empirically
demonstrated using metrics as described below in Sec. III.

For the chaotic dynamics, we used the Rössler system
[12] because it is a well-known dynamical system that can
exhibit various chaotic mechanisms [13]. CACOC works as
follows: UAVs have a constant speed and choose at each
step a direction: A for ahead, R for 45◦ right and L for
45◦ left. If there is no virtual pheromone to guide the UAV
(pheromones are deposited by each UAV to indicate areas
they already visited), then the next choice is given by the
first return map (Fig. 2). This map underline the dynamical
signature of the Rössler system giving ρn+1 versus ρn. Thus,
the next action depends on the previous one:

• if ρn < 1/3 then direction is right;
• if 1/3 < ρn < 2/3 then direction is left;
• else the direction is ahead.

In that case, the good exploration performance of the UAVs
is due to the periodic orbits of the system that lead to
patterns (Fig. 2). If there are pheromones, they have repulsive
properties and the next choice depends on the total amount
of pheromones sensed around the UAV. Such a repulsive
effect prevents the UAVs to reach recently visited areas since
pheromones evaporate in time. We also used the first return

map values to choose the next direction with the pheromones
perception instead of a random number. Consider that pL,
pA and pR are inversely proportional to the total amount of
pheromones sensed respectively to the left, ahead and right
of the UAV and that pR +pL +pA = 1. Thus, with ρn taken
from the first return map (Fig. 2), the next direction is chosen
according to these rules:

• if ρn < pR next direction is right;
• if pR < ρn < pR + pL next direction is left;
• else the direction is ahead.
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Fig. 2. Details of the CACOC mobility model with the first return maps
from the Rössler system and the pattern it generates when there is no
pheromone to guide the UAVs. The next choice depends on the previous
one with: A for ahead, L for left and R for right. The period 1 orbits leads
to symbols AAAAA. . . (strong violet straight line) and the period 2 leads
to the pattern ARARA. . . (lime green large circle).

We demonstrated that the performance of the mobility
model is increased with this chaotic behavior instead of
a random one (see [9] for details). CACOC relies on a
simplified quadrotor model, this article therefore proposes
to use a realistic one to evaluate CACOC performance in
a physical environment. In this work, the CACOC mobility
model provides waypoints that UAVs will try to reach. For
the sake of clarity, the mobility model is referred to as
Waypoints in the remainder of this article.

B. UAV control (Controlled)

Fig. 3. Quadrotor system.

As representation of a real quadrotor system, the motion
model of an AR.Drone 2.0 is used in this work. Its system



dynamics according to Fig. 3 and model predictive control
(MPC) have been presented in some of the authors previous
work [10]. Considering multiple quadrotors, the dynamics
of quadrotor i can be described, using state xi and control
vector ui:

xi =
[
xi, yi, zi,Ψi, vf,i, vs,i

]
(1)

ui =
[
uf,i, us,i, uz,i, uΨ,i

]
. (2)

For means of visualization, the time dependency of states
and controls (e.g., xi(t)) is not explicitly shown here. The
system state (1) consists of the quadrotor’s xi, yi, zi posi-
tion, its yaw angle Ψi and the forward vf,i and sidewards
velocities vs,i. Its control vector (2) concatenates forward
uf,i, sidewards us,i, upward uz,i and yaw uΨ,i velocity. The
approximation of the real quadrotor’s dynamics by means of
system identification, results in:

ẋi = fi (xi,ui) =


vf,i cos (Ψi) − vs,i sin (Ψi)
vf,i sin (Ψi) + vs,i cos (Ψi)

uz,i
1.6uΨ,i

−0.5092vf,i + 1.458uf,i
−0.5092vs,i + 1.458us,i

 . (3)

The scalar parameters in (3) have been identified from a
real AR.Drone 2.0 system by means of a motion capture
system. This system model is used in an MPC approach,
which computes optimal controls by solving the following
optimal control problem (OCP):

min
ui

Ji =

∫ tf

t0

(x∗i − xi)
>
Q (x∗i − xi) + u>i Rui dτ (4)

s.t.
ẋi = fi (xi,ui) (5)

c ≤
[
uf (t)

2 − 1 us (t)
2 − 1 uz (t)

2 − 1 u2
Ψ − 1

]> (6)

xi (0) =
[
50, 0, i, 0, 0, 0

]
(7)

Q = D{
[
1.5, 1.5, 1.6, 0.1, 0, 0

]
}, (8)

R = D{
[
1, 1, 1, 1

]
} (9)

for each drone i = 1...10 over a receding horizon. The
system dynamics (3) are represented as constraints (5). The
system inputs are defined between −1 ≤ u ≤ 1, which is
taken into account with constraint (6). To avoid collisions,
the quadrotors initial positions xi (0) differ in their height
(7). The tracking of the desired state x∗

i is achieved by a
quadratic state penalty with Q (8) in cost-function Ji (4).
For means of visibility of the area coverage, the desired
trajectory waypoints in the given scenario are limited to
changes in the xy-plane, while the initial zi = i and ψi = 0
are tracked. Furthermore the quadratic control penalty with
R (9) is minimizing the control effort and thus the energy
consumption.

Analog to the previous work [10], a Condensed Multiple
Shooting Continuation Generalized Minimal Residual (CM-
SCGMRES) [14] approach is used to solve the MPC with
OCP (4)-(9). The CMSCGMRES is parameterized with a
maximum number of iterations kmax = 6, horizon length

T = 1s, control update interval of ∆T = 0.1s, nhor = 10
steps within the horizon, a forward difference step of h =
0.001s, solution tolerance of ε = 10−4, continuation factor
ζ = 10 and the horizon expansion factor α = 2. More details
about the parameters are given in [15].

III. EXPERIMENTATION

The first part of this section provides information on the
simulation framework used for the experiments. Then the
experimental setup, including all parameters and metrics used
are detailed. Finally the last part contains the experimental
results and their analysis.

A. Simulation framework

For the experimental validation, the quadrotor dynamics
(3) are implemented in the V-Rep simulation environment
[16]. The MPC is interfaced via ROS. An example of a
scenario with three controlled UAVs is shown in Fig. 4.

Fig. 4. Three MPC controlled UAVs in the V-Rep environment following
waypoints provided by CACOC for three UAVs.

Fig. 5. Simulation environment of use case of CACOC exploration with
10 MPC controlled UAVs.

For the evaluation of the large area coverage with ten
UAVs, as illustrated in Fig. 5, the 3D environment data is
mapped onto the xy-plane as shown in Fig. 6 for 10 UAVs1.

1A video illustrating the framework simulator is available at https:
//martinrosalie.gforge.uni.lu/_downloads/icuas.mp4



Fig. 6. Ten controlled UAVs trajectories in the squared area where the
thickest straight lines are links between the waypoints they have to reach.

This figure permits to highlight the smoother trajectory
of the controlled UAVs (thick line) in comparison to the
discontinuous velocity trajectories (thin line) of the CACOC
mobility model.

B. Experimental setup

The simulation is performed using the environment shown
in Tab. I. The same three area coverage metrics as introduced
in [9] are used. A short description is provided hereinafter.
Fig. 7 underlines how the metrics are calculated for one
simulation.

TABLE I
MAIN EXPERIMENTAL PARAMETERS.

Parameter Name Parameter Value
Simulation area
Geographical Area 100 m × 100 m
Number of cells 100 × 100
UAV Waypoint
UAVs speed 1 m/s
Possible UAV actions ahead, 45◦ left, 45◦ right
Initial UAVs position middle of the bottom of the map
Experiments
Mobility models Waypoint, Controlled
Number of UAVs 10
Simulation steps 4000
Independent runs 30

1) Coverage: The coverage is the percentage of the total
area visited during the whole simulation. The environment
is a 100 m by 100 m square area. The coverage value varies
during the whole simulation. To have a representative value
of the coverage, we choose to compare the coverage value
after 4000 steps for each model. This indicates the efficiency
of the models to visit the total area. On the other hand, we
want to evaluate the first steps of each model to compare their
initial behavior. We extract the slope of a linear regression
a× x considering the 500 first steps (Fig. 7).

Fig. 7. Metrics measurements for one simulation. Two values are extract
for the coverage: the coverage after 4000 steps and the slope of coverage for
the 500 first steps. For the fairness we compute the slope of the fairness after
the 500 first steps. The average value of the recent coverage is calculated
after the 100 first steps.

2) Fairness: The fairness measures if all cells are regu-
larly and equally scanned. This is computed as the standard
deviation of their respective number of scans [17]. To eval-
uate the fairness during the whole simulation, we perform a
linear regression a×x+ b using the last 3500 steps (Fig. 7).
This measure is complementary to the coverage initial slope
that only evaluates the initial UAV trajectories. Here, the
slope value is considered as a measure to evaluate the fairness
of the models without this initialization part.

3) Recent coverage ratio: This metric introduced in [18]
represents the percentage of coverage during the last 100
iterations. These 100 steps correspond to the pheromones’
evaporation time. We exclude the 100 first iterations of our
simulation to compute the mean value of the recent coverage
(Fig. 7).

C. Experimental results

The previously described metrics are obtained with the
same program to avoid bias. First, they are computed from
the waypoints and secondly using the synchronized positions



of the UAVs from the V-Rep simulation using ROS. As
CACOC is a deterministic mobility model, we will only
vary the initial conditions of the dynamical system to create
a wide range of simulations with the same mobility model
without changing its parametrization as it has already been
done previously [9].

TABLE II
p−VALUES OF TESTS TO HIGHLIGHT STATISTICAL DIFFERENCE

BETWEEN Waypoints AND Controlled METHODS.

Metric Test Waypoints Controlled
Coverage after 4000 steps Shapiro-Wilks 0.06068 0.07211

F-test 0.3859
Student’s test 9.095e-06

Slope of Coverage Shapiro-Wilks 0.06752 0.4839
F-test 0.9323

Student’s test 4.367e-08
Slope of Fairness Shapiro-Wilks 0.9276 0.7917

F-test 0.7721
Student’s test 0.02913

Recent Coverage Shapiro-Wilks 0.5773 2.539e-05
F-test 5.696e-07

Wilcoxon test ≤ 2.2e-16

Fig. 8 gives the box plot for each metric and method
with a smooth density estimation. It should be noted that
some of the results presented here are not comparable to
our previous simulations [9] because their duration is shorter
due to the time necessary to compute the controlled model.
Associated with the Fig. 8 we perform pairwise statistical
tests. The purpose of the Shapiro-Wilks test is to evaluate
if the values are normally distributed. With 95% confidence,
this hypothesis is satisfied for our results (except the recent
coverage of the controlled model) because the p−value
≤ 0.05.

The F-test evaluates the equality of the variance with the
same mechanism for the hypothesis for a given p−value. The
variances are similar for all the metrics except for the recent
coverage one with 95% confidence. Finally, if the data are
normally distributed with equality of the variance, we can
perform a Student’s test to check if the data follow the same
distribution. Else, a Wilcoxon signed rank test is performed
for not normally distributed data. With 95% of confidence we
can say that the metric data of the Waypoints and Controlled
model do not follow the same distribution. Even though,
Tab. II indicates that the slope of fairness is the metric that is
the most similar: the p−value of the Student’s test is equal to
0.02913. We assume that the values for this metric are close
because of the use of a linear regression over 87% of the
simulation time. For this metric, the average value is higher
for the Controlled model than for the Waypoints the average
value is higher (Fig. 7). This means that the coverage is
more fair for the Waypoints method than for the Controlled
one. This indicates that despite some small change in the
trajectories of the UAVs, the models remain globally efficient
considering this metric.

This is not the case for the recent coverage because the
gap between the two average values represent 10% of the
optimal value (see [9] for details). This metric evaluates
the performance on a short term giving the percentage of
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area covered during the last 100 steps. If we only consider
this metric we can erroneously consider that the controlled
method does not perform as well as the Waypoints model.

Considering the whole statistics, we can conclude that
the global performance of the controlled method is very
satisfactory. As previously mentioned, the most noticeable
performance degradation is for the recent coverage perfor-
mance. Conversely, the quality of slope of fairness is very
similar between the two methods. In addition, it seems that
the shift between the expected position and the real one
are compensated on a long term for the coverage. Due the
position tracking, the quadrotor asymptotically approaches
the desired target points. For moving targets as in the present
work, this delay leads to a position tracking error. This
explains the difference in the slope of coverage. Furthermore
this position tracking error results in less observed boundary
areas, as all target points lie within the given rectangular
region. Accordingly, the coverage in the studied scenario is
slightly lower for the controlled system. As this difference in
coverage is the direct result of the closed loop dynamics of
the controlled quadrotor system, this difference is supposed
to decrease with an increasing size of the observed area.

IV. CONCLUSION

In this paper, we compared the coverage performance
of a state-of-the-art UAV swarm mobility model (CACOC)
against its physical simulation in a robotic dedicated environ-
ment. An empirical evaluation of both the initial Waypoints
model and of the Controlled model was conducted on a 10
UAVs scenario. The difference between these two simula-
tions was evaluated using four area coverage metrics and
assessed with statistical tests. The obtained results show that
the presented CACOC-MPC approach implemented in the
robotics simulator was able to accomplish the covering task
efficiently. Indeed, the high similarity of the results between
the Waypoints and Controlled demonstrates that it can be
expected that it will perform well in a real environment with
the only consideration of a fine tuning of the MPC approach.

Future work on the UAV control part will treat the
reduction of the position tracking error, for instance, with
the introduction of a disturbance model, the adaptation of the
MPC control law, or a target position controller as already
presented in [10]. This two sided simulator will also permit
to work on the CACOC parameters (pheromone evaporation
time, covered area by step, etc.) to increase the performance
of the mobility model by comparing the theoretical and
realistic results.

Finally, we also plan to work on collision avoidance for the
UAVs. In this work we consider that each UAV has its own
altitude but we want to compare the performance of CACOC
waypoints with controlled UAVs at the same altitude. The
main question we would like to address is the following: is
it statistically efficient to implement a collision avoidance
mechanism for the Waypoints or the collision avoidance
included in the Controlled method is sufficient?

Acknowledgments

The experiments presented in this paper were carried out
using the HPC facilities of the University of Luxembourg
[19] (see http://hpc.uni.lu).

REFERENCES

[1] V. Gazi and K. M. Passino, Swarm Coordination and Control Prob-
lems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 15–
25.

[2] S. Bertrand, J. Marzat, H. Piet-Lahanier, A. Kahn, and Y. Rochefort,
“MPC Strategies for Cooperative Guidance of Autonomous Vehicles,”
AerospaceLab, no. 8, pp. 1–18, 2014.

[3] N. Nigam, “The multiple unmanned air vehicle persistent surveillance
problem: A review,” Machines, vol. 2, no. 1, pp. 13–72, 2014.

[4] P. Gaudiano, B. Shargel, E. Bonabeau, and B. T. Clough, “Swarm
intelligence: a new C2 paradigm with an application to control of
swarms of UAVs,” in Proc. of International Command and Control
Research and Technology Symposium (ICCRTS), 2003.

[5] R. R. McCune and G. R. Madey, “Swarm control of UAVs for coop-
erative hunting with DDDAS,” Procedia Computer Science, vol. 18,
pp. 2537–2544, 2013.

[6] E. Kuiper and S. Nadjm-Tehrani, “Mobility models for UAV group re-
connaissance applications,” in Proc. of IEEE International Conference
on Wireless and Mobile Communications (ICWMC’06), 2006.

[7] A. H. Gandomi, G. J. Yun, X.-S. Yang, and S. Talatahari, “Chaos-
enhanced accelerated particle swarm optimization,” Communications
in Nonlinear Science and Numerical Simulation, vol. 18, no. 2, pp.
327–340, 2013.

[8] A. H. Gandomi, X.-S. Yang, S. Talatahari, and A. H. Alavi, “Firefly
algorithm with chaos,” Communications in Nonlinear Science and
Numerical Simulation, vol. 18, no. 1, pp. 89–98, 2013.

[9] M. Rosalie, G. Danoy, S. Chaumette, and P. Bouvry, “From random
process to chaotic behavior in swarms of UAVs,” in Proc. of ACM
Symposium on Development and Analysis of Intelligent Vehicular
Networks and Applications (DIVANet’16), 2016.

[10] J. Dentler, S. Kannan, M. A. Olivares-Mendez, and H. Voos, “A real-
time model predictive position control with collision avoidance for
commercial low-cost quadrotors,” in Proc. of IEEE Multi-Conference
on Systems and Control (MSC), 2016.

[11] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D.
dissertation, Politecnico di Milano, Italy, 1992.
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