Mircea Sofonea
Professor at the University of Perpignan (France)


Papers in Refereed Journals

  1. Well-posedness and Convergence Results for History-dependent Inclusions,
    Numerical Functional Analysis and Optimization, https://doi.org/10.1080/01630563.2024.2423246 (+D. Tarzia).

  2. A Penalty Method for Elliptic Variational-hemivariational Inequalities,
    Axioms 2024, 13, 721, https://doi.org/10.3390/axioms13100721 (+D. Tarzia).

  3. Modelling and Analysis of a Viscoelastic Contact Problem with Unilateral Constraints,
    Journal of the Spanish Society of Applied Mathematics (SeMA Journal), http://doi.org/10.1007/s40324-024-00365-5 (+D. Tarzia).

  4. Well-posedness and Convergence Results for Elliptic Hemivariational Inequalities,
    Applied Set-Valued Analysis and Optimization 7 (2025), 1-21. (+D. Tarzia).

  5. Convergence Results for History-dependent Variational Inequalities,
    Axioms 2024, 13, 316, https://doi.org/10.3390/axioms130150316 (+D. Tarzia).

  6. A Two-dimensional Elastic Contact Problem with Unilateral Constraints,
    Mathematics and Mechanics of Solids, 29 (2024), 2016-2035. (+A. Rodriguez Aros).

  7. Convergence Criteria for Fixed Point Problems and Differential Equations,
    Mathematics 2024, 12, 395, https://doi.org/10.3390/math12030395. (+D. Tarzia).

  8. A Convergence Criterion for a Class of Stationary Inclusions in Hilbert Spaces,
    Axioms 2024, 13, 52, https://doi.org/10.3390/axioms13010052. (+D. Tarzia).

  9. A Convergence Criterion for Elliptic Variational Inequalities,
    Applicable Analysis 103 (2024), 1810-1830 (+C. Gariboldi, A. Ochal, D. Tarzia).

  10. Duality Arguments in the Analysis of a~Viscoelastic Contact Problem,
    Communications in Nonlinear Science and Numerical Simulation 128 (2024), Paper No. 107581, 14 pp. (+P. Bartman, A. Ochal).

  11. Modelling, Analysis and Numerical Simulation of a Spring-Rods System with Unilateral Constraints,
    Mathematics and Mechanics of Solids 29 (2024), 246—263 (+A. Ochal, W. Przkadka, D. Tarzia).

  12. Analysis and Control of a General Elliptic Variational-Hemivariational Inequality,
    Minimax Theory and its Applications 9 (2024), 253—270 (+W. Han).

  13. Convergence Analysis for Elliptic Quasivariational Inequalities,
    Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 74 (2023), Paper No. 130, 18 pp. (+M. Barboteu).

  14. Convergence Criteria, Well-posedness Concepts and Applications,
    Mathematics and its Applications, Annals of AOSR 15 (2023), 308-329 (+D. Tarzia).

  15. Well-posed Constrainted Problems with Applications in Contact Mechanics,
    Nonlinear Analysis Series B, Real Word Applications 72 (2023), Paper No. 103841, 18 pp. (+M. Barboteu).

  16. Well-posedness of a Mixed Hemivariational-Variational Problem,
    Fixed Point Theory 24 (2023), 721-742 (+A. Matei).

  17. On the Well-posedness of Variational-hemivariational Inequalities and Associated Fixed point Problems,
    Journal of Nonlinear and Variational Analysis} 6 (2022), 567-584. (+R. Hu).

  18. Numerical Analysis of a General Elliptic Variational-Hemivariational Inequality,
    Journal of Nonlinear and Variational Analysis 6 (2022), 517-534 (+W. Han).

  19. A Differential Variational Inequality in the Study of Contact Problems with Wear,
    Nonlinear Analysis Series B, Real Word Applications 67 (2022), Paper No. 103619, 19 pp. (+T. Chen, N. Huang).

  20. Monotonicity Arguments for Variational-Hemivariational Inequalities in Hilbert Spaces,
    Axioms 2022, 11, 136, https://doi.org/10.3390/axioms11030136.

  21. Tykhonov Well-posedness of Variational-Hemivariational Inequalities and Associated Minimization Problems,
    Journal of Nonlinear and Convex Analysis 24 (2023), 759-777 (+R. Hu, X. Luo, Y. Xiao).

  22. A History-dependent Inclusion with Applications in Contact Mechanics,
    Numerical Functional Analysis and Optimization 43 (2022), 497—521 (+T. Chen).

  23. Tykhonov Well-posedness of Fixed Point Problems in Contact Mechanics,
    Fixed Point Theory and Algorithms for Sciences and Engineering (2022), Paper No. 11, 25 pp.

  24. Levitin-Polyak well-posedness of variational-hemivariational inequalities,
    Communications in Nonlinear Science and Numerical Simulation}109 (2022), Paper No. 106324, 17 pp. (+R. Hu, H. Huang, Y. Xiao).

  25. Duality Arguments for Well-posedness of History-dependent Variational Inequalities,
    Electronic Journal of Differential Equations (2022) Paper No. 3, 10 pp. (+R. Hu).

  26. History-dependent Operators and Prox-regular Sweeping Processes,
    Fixed Point Theory and Algorithms for Sciences and Engineering 109 (2022) Paper No. 106324, 17 pp. (+F. Nacry).

  27. Generalized Well-posedness and Convergence for a Class of Hemivariational Inequalities,
    Journal of Mathematical Analysis and Applications 507 (2022), Paper No. 125839, 23 pp. (+J. Cen, C. Min, S. Zeng).

  28. A Fixed Point Approach of Variational-Hemivariational Inequalities,
    Carpathian Journal of Mathematics} 38 (2022), 573-581. (+R. Hu, Y. Xiao).

  29. Tykhonov Triples and Convergence Analysis for an Inclusion Problem, Bulletin Mathématique la Société Mathématique de Roumanie 65 (2022), 73-96.

  30. Minimization Arguments in Analysis of Variational-Hemivariational Inequalities,
    Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 73 (2022), Paper No. 6, 18 pp (+W. Han)

  31. Analysis and Control of an Electro-Elastic,
    Mathematics and Mechanics of Solids 27 (2022), 813-827 (+T. Chen, R. Hu).

  32. Implicit Sweeping Process Arguments in Contact Mechanics,
    Matematica Aplicada, Computacional e Industrial 8 (2021), 11-14

  33. Weak Formulations of Quasistatic Frictional Contact Problems,
    Communications in Nonlinear Science and Numerical Simulation 101 (2021), Paper No. 105888, 14 pp. (+Y. Xiao).

  34. Analysis and Control of Stationary Inclusions in Contact Mechanics, Nonlinear Analysis Series B, Real Word Applications 61 (2021), Paper No. 103335, 20 pp.

  35. A Generalized Penalty Method for Differential Variational-hemivariational Inequalities,
    Acta Mathematica Scientia Series B 42 (2022), 247--264.(+L. Lu, L. Li)

  36. Generalized Penalty Method for History-dependent Variational-Hemivariational Inequalities,
    Nonlinear Analysis Series B, Real Word Applications} 61 (2021), Paper No. 103320, 20 pp. (+Y.Xiao, S. Zeng).

  37. A History-dependent Sweeping Processes in Contact Mechanics,
    Journal of Convex Analysis 29 (2022), 77-100(+F. Nacry).

  38. Tykhonov Well-posedness of a Heat Transfer Problem with Unilateral Constraints,
    Applications of Mathematics 67 (2022), 167-197 (+ D.A. Tarzia).

  39. Tykhonov Well-posedness of a Mixed Variational Problem,
    Optimization, 71 (2022), 461-581, (+ D. Cai, Y. Xiao) https://doi.org/10.1080/02331934.2020.1808646.

  40. Tykhonov Well-posedness and Convergence Results for Contact Problems with Unilateral Constraints
    Technologies 2021, 9, 1, p. 1-25, https://dx.doi.org/10.3390/technologies9010001 (+M. Shillor).

  41. A class of Nonlinear Inclusions and Sweeping Processes in Solid Mechanics,
    Acta Applicandae Mathematicae 171 (2021), paparr n°16, 26 pp (+ F. Nacry).
    https://doi.org/10.1007/s10440-020-00380-4

  42. Well-posedness of Minimization Problems in Contact Mechanics,
    Journal of Optimization Theory and Applications (JOTA), 188 (2021), 650-672 (+Y. Xiao) https://doi.org/10.1007/s10957-020-01801-y (+ Y. Xiao).

  43. Tykhonov Triples and Convergence Results for Hemivariational Inequalities,
    Nonlinear Analysis: Modelling and Control , 26 (2021), 271-292 (+ R. Hu, Y. Xiao).

  44. Optimal Control of Differential Quasivariational Inequalities with Applications in Contact Mechanics,
    Journal of Mathematical Analysis and Applications, 493 (2021), Paper n°124567, 23pp (+ J. Bollati, D.A. Tarzia). https://doi.org/10.1016/j.jmaa.2020.124567.

  45. Convergence Results for Elliptic Variational-Hemivariational Inequalities,
    Advances in Nonlinear Analysis 10 (2021), 2-23 (+ R. Hu, Y. Xiao).

  46. Tykhonov triples, Well-posedness and Convergence Results,
    Carphatian Journal of Mathematics, 37 (2021), 135-143 (+ Y. Xiao).

  47. Tykhonov Triples and Convergence Results for History-dependent Variational Inequalities,
    ITM Web of Conferences 34, 01006 (2020) Third ICAMNM 2020, https://doi.org/10.1051/itmconf/20203401006.

  48. Tykhonov Well-posedness of a Rate-type Constitutive Law,
    Mechanics Research Communications, 108 (2020), 103566, https://doi.org/10.1016/j.mechrescom.2020.10356.

  49. A Tykhonov-type well-posedness concept for elliptic hemivariational inequalities,
    Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 71 (2020), paper n°120, 17 pp. (+ R. Hu, Y. Xiao). https://doi.org/10.1007/s00033-020-01337-1.

  50. Tykhonov Well-posedness of Split Problems,
    Journal of Inequalities and Applications 153 (2020), paper n°153, 29 pp (+ Q. Shu, Y. Xiao) https:// doi.org/10.1186/s13660-020-02421-w. 

  51. Convergence Results for Optimal Control Problems Governed by Elliptic Quasivariational Inequalities,
    Numerical Functional Analysis and Optimization 41 (2020), 1326-1351 (+ D.A. Tarzia).

  52. On the Tykhonov Well-posedness of an Antiplane Shear Problem,
    Mediterranean Journal of Mathematics, 17 (2020), paper n°150, 21 pp (+ D.A. Tarzia). https://doi.org/10.1007/s00009-020-01577-5.

  53. Generalized Penalty Method for Semilinear Differential Variational Inequalities,
    Applicable Analysis, 101 (2020), 437-453 (+L. Li, L. Lu)                 https://doi.org/10.1080/00036811.2020.1745780.

  54. Tykhonov Well-posedness of a Viscoplastic Contact Problem,
    Journal of Evolution Equations and Control Theory 9 (2020), 1167-1185 (+ Y. Xiao).

  55. Tykhonov Well-posedness of a Frictionless Unilateral Contact Problem,
    Mathematics and Mechanics of Solids 25 (2020), 1294-1311 (+ Z. Liu, Y. Xiao).

  56. Convergence and Optimization Results fora History-dependent Variational Problem,
    Acta Applicandae Mathematicae 169 (2020) 157-182 (+ A. Matei).

  57. Solvability and Optimization for a Class of Mixed Variational Problems,
    Optimization, 69 (2020), 1097-1116 (+ A. Matei).

  58. Optimal Control for a Class of Mixed Variational Problems,
    Journal of Applied Mathematics and Physics (ZAMP) 70 (2019) Art. 127, 17 pp. (+ A. Matei, Y. Xiao).

  59. On the Well-posedness Concept in the Sense of Tykhonov,
    Journal of Optimization Theory and Applications. 183 (2019), 139-157 (+ Y. Xiao).

  60. Tykhonov Well-posedness of Elliptic Variational-Hemivariational Inequalities,
    Electronic Journal of Differential Equations, Paper No. 64 (2019), 19 pp. (+ Y. Xiao).

  61. Optimization Problems for a Viscoelastic Frictional Contact Problem with Unilateral Constraints,
    Nonlinear Analysis Series B: Real Word Applications 50 (2019), 86-103 ( + Y. Xiao, M. Couderc).

  62. Convergence of Solutions to History-dependent Variational-Hemivariational Inequalities,
    Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), https://doi.org/10.1002/ zamm.201800292 (+ Y. Xiao).

  63. W. Han and M. Sofonea, Convergence Analysis of Penalty Based Numerical Methods for Constrained Inequality Problems,
    Numerische Mathemätik 142 (2019), 917-940 (+ W. Han).

  64. Generalized Penalty Method for Elliptic Variational-Hemivariational Inequalities,
    accepted for publication dans Applied Mathematics and Optimization, https://doi.org/10.1007/ s00245-019-09563-4.

  65. Boundary Optimal Control of a Nonsmooth Frictionless Contact Problem,
    Computers and Mathematics with Applications 78 (2019), 152-165 (+ Y. Xiao).

  66. On the Optimal Control of Variational-Hemivariational Inequalities,
    Journal of Mathematical Analysis and Applications 475 (2019), 364-384 (+ Y. Xiao).

  67. On a Penalty Method for Unilateral Contact Problemwith Non-monotone Contact Condition,
    Journal of Computational and Applied Mathematics 356 (2019), 293-301 (+ W. Han, S. Migorski).

  68. Time-dependent Inclusions and Sweeping Processes in Contact Mechanics,
    Journal of Applied Mathematics and Physics (ZAMP) 70 (2019) Art. 39, 19 pp. (+ S. Adly).

  69. Numerical Analysis of Hemivariational Inequalities in Contact Mechanics,
    Acta Numerica (2019), 175-286 (+ W. Han).

  70. Well-posedness of history-dependent sweeping processes,
    SIAM Journal of Mathematical Analysis 51 (2019), 1082-1107 (+ S. Migorski, S. Zeng).

  71. Unique solvability and exponential stability of differential hemivariational inequalities,
    Applicable Analisis, 99 (2020), 2489-2506. (+ X. Li, Z. Liu).

  72. Optimization Problems for Elastic Contact Models with Unilateral Constraints,
    Journal of Applied Mathematics and Physics (ZAMP) 70 (2019) Art. 1, 17 pp. (+ Y. Xiao, M. Couderc).

  73. History-dependent Inequalities for Contact Problems with Locking Materials,
    Journal of Elasticity 134 (2019), 127-148.

  74. Optimal Control of Variational-Hemivariational Inequalities in Reflexive Banach Spaces,
    Applied Mathematics and Optimization 79 (2019), 621-646.

  75. Convergence Results for Primal and Dual History-dependent Quasivariational Inequalities,
    Proceedings of the Royal Society of Edinburgh - Section A, Mathematics 149 (2019), 471-494. (+ A. Benraouda).

  76. A Nonsmooth Static Frictionless Contact Problem with Locking Materials,
    Analysis and Applications 6 (2018), 851-874.

  77. A Class of Optimization Problems with Applications in Contact Mechanics,
    Revue Roumaine de Mathématiques Pures et Appliquées 63 (2018), 547-564.

  78. An Elastic Frictional Contact Problem with Unilateral Constraint,
    Mediterranean Journal of Mathematics, 15 (2018), Art 195, 18 pp. (+ M. Couderc).

  79. Convergence Results and Optimal Control for a Class of Hemivariational Inequalities,
    SIAM Journal of Mathematical Analysis 50 (2018), 4066-4086.

  80. Model and Analysis for Quasistatic Frictional Contact of a 2D Elastic Bar,
    Electronic Journal of Differential Equations, Paper No. 107 (2018), 19 pp (+ M. Shillor) .

  81. Numerical Modelling of a Dynamic Contact Problem with Normal Damped Response and Unilateral Constraint,
    Journal of Theoretical and Applied Mechanics 56 (2018), 483-496 (+ M. Barboteu, Y. Ouafik ).

  82. Numerical Analysis of Stationary Variational-Hemivariational Inequalities,
    Numerische Mathemätik} 139 (2018), 563-592 (+ W. Han, D. Danan).

  83. Differential Quasivariational Inequalities in Contact Mechanics,
    Mathematics and Mechanics of Solids 24 (2019), 845-861 (+ Z. Liu).

  84. A Penalty Method for History-dependent Variational-Hemivariational Inequalities,
    Computers and Mathematics with Applications 75 (2018), 2561-2573 (+ S. Migorski, W. Han).

  85. Analysis of a Rate-and-state Friction Problem with Viscoelastic Materials,
    Electronic Journal of Differential Equations, Paper No. 299 (2017), 17 (+ F. Patrulescu).

  86. Analysis and Control of a Nonlinear Boundary Value Problem,
    Nonlinear Analysis : Modelling and Control} 22 (2017), 841-860 (+ H. Hechaichi) .

  87. A Mixed Variational Formulation of a Contact Problem with Wear,
    Acta Applicandae Mathematicae 153 (2018), 125-146 (+ F. Patrulescu, A. Ramadam).

  88. Nonsmooth Dynamic Frictional Contact of a Thermoviscoelastic Body,
    Applicable Analysis} 97 (2018), 1228-1245 (+ S. Migorski, A. Ochal, M. Shillor).

  89. Optimal Control of a Two-dimensional Contact Problem,
    Applicable Analysis 97 (2018), 1281-1298 (+ A. Benraouda, H. Hechaichi).

  90. Subdifferential Inclusions for Stress Formulations of Unilateral Contact Problems,
    Mathematics and Mechanics of Solids 23 (2018), 392-410 (+ K. Bartosz).

  91. Model and Simulations for Quasistatic Frictional Contact of a Linear 2D Bar,
    Journal of Theoretical and Applied Mechanics 55 (2017), 897—910 (+ M. Barboteu, N. Djehaf, M. Shillor).

  92. Analysis of a General Dynamic History-dependent Variational-Hemivariational Inequality,
    Nonlinear Analysis Series B: Real World Applications}, 36(2017), 69-88 (+ W. Han, S. Migórski).

  93. Numerical Analysis of Elliptic Hemivariational Inequalities,
    SIAM Journal of Numerical Analysis 55 (2017), 640-663 (+ W. Han, M Barboteu).

  94. Convergence Results for Elliptic Quasivariational, Inequalities,
    Journal of Applied Mathematics and Physics (ZAMP), 68 (2017), Art.10, 11 pp. DOI: 10.1007/s00033-016-0750-z, à paraître (+ A. Benraouda).

  95. A Mixed Variational Formulation for  a  Piezoelectric Frictional Contact Problem,
    IMA Journal Applied 82 (2017), 334-354 (+ A. Matei).

  96. A Class of Variational-Hemivariational Inequalities in Reflexive Banach Spaces,
    Journal of Elasticity 127(2017), 151-178 (+ S. Migórski, A. Ochal).

  97. Modelling and Analysis of a Contact Problem for a Viscoelastic rod,
    Journal of Applied Mathematics and Physics (ZAMP), 67 (2016), Art. 127, 21 pp. DOI 10.1007/s00033-016-0718-z, à paraître ( + K. Bartosz).

  98. A Convergence Result for History-dependent Quasivariational Inequalities,
    Applicable Analysis 96(2017),2635-2651(+ A. Benraouda).

  99. A Nonlinear History-dependent Boundary Value Problem,
    Quarterly of Applied Mathematics 75 (2017), 181-199(+ A. Benseghir).

  100. A Dynamic Contact Model for Viscoelastic Plates,
    Quarterly Journal of Mechanics and Applied Mathematics 70 (2017), 1-19 (+ K. Bartosz)

  101. Analysis of a Sliding Frictional Contact Problem with Unilateral Constraint,
    Mathematics and Mechanics of Solids  22 (2017), 324-342  (+ Y. Souleiman)

  102. An Evolutionary Boundary Value Problem,
    Mediteranean Journal of Mathematics 13 (2016), 4463-4480 (+ A. Benseghir).

  103. A Class of History-dependent Variational-Hemivariational Inequalities,
    Nonlinear Differential Equations and Applications  23 (2016) Art. 38, 23 pp., DOI: 10.1007/s00030-016-0391-0 (+ S. Migórski).

  104. Analysis of a contact problem with wear and unilateral constraint,
    Applicable Analysis 95 (2016), 2602—2619 ( + F. Patrulescu, Y. Souleiman).

  105. A Viscoelastic Sliding Contact Problem with Normal Compliance, Unilateral Constraint and Memory Term,
    Mediteranean Journal of Mathematics 13 (2016), 2863-2886 (+ Y. Souleiman).

  106. The Rothe Method for Variational-HemivariationalInequalities with applications to Contact Mechanics,
    SIAM Journal of  Mathematical Analysis 48 (2016), 861-883 (+ K. Bartosz).

  107. A class of hemivariational inequalities for nonstationary Navier-Stokes equations,
    Nonlinear Analysis Series B: Real World Applications 31 (2016), 257-276 (+ C. Fang, W. Han, S. Migórski).

  108. Fully History-dependent Quasivariational Inequalities in Contact
    Mechanics, Applicable Analysis 95 (2016), 2464-2484 (+ Y. Xiao).

  109. A Class of Subdifferential Inclusions for Elastic Unilateral Contact Problems,
    Set-Valued and Variational Analysis 24 (2016), 355-379 (+ P. Kalita, S. Migórski).

  110. Analysis of a Contact Problem with Normal Damped Response and Unilateral Constraint,
    Journal of Applied Mathematics and Mechanics (ZAMM) 96, (2016), 408-428 (+ M. Barboteu, D. Danan).

  111. Primal and Dual Variational Formulation of a Frictional Contact Problem,
    Mediterranean Journal of Mathematics 13 (2016), 857-872 (+ D. Danan, C. Zheng).

  112. Numerical Solution of a Contact Problem with Unilateral Constraint and History-dependent Penetration,
    Journal of Engineering Mathematics,  97 (2016), 177-194 (+ M. Barboteu, W. Han).

  113. Analysis of a Contact Problem with Unilateral Constraint and Slip-dependent Friction,
    Mathematics and Mechanics of Solids 21 (2016), 791-811 (+ M. Barboteu, X. Cheng).

  114. History-dependent Problems with Applications to  Contact Models for Elastic Beams,
    Applied Mathematics &Optimization, 73 (2016), 71-98 (+ K. Bartosz, P. Kalita, S. Migórski, A. Ochal).

  115. A Mixed Variational Problem with Applications in Contact Mechanics,
    Journal of Applied Mathematics and Physics (ZAMP) 66 (2015), 3573-3589 (+ A. Matei).

  116. Numerical Analysis of History-dependent Variational-Hemivariational Inequalities with Applications to Contact Problems,
    European Journal of Applied Mathematics, 26 (2015), 427-452 (+ W. Han, S. Migórski).

  117. History-dependent Mixed Variational Problems in Contact Mechanics,
    Journal of Global Optimization 61 (2015), 591-614 (+ A. Matei).

  118. History-dependent Variational-Hemivariational Inequalities in Contact Mechanics,
    Nonlinear Analysis Series B: Real World Applications, 22 (2015), 604-618 (+ S. Migorski, A. Ochal).

  119. A Viscoelastic Contact Problem with Adhesion and Surface Memory Effects,
    Mathematical Modelling and Analysis 19 (2014), 607-626 (+ F. Patrulescu).

  120. A Class of Variational-Hemivariational Inequalities with Applications to Elastic Contact Problems,
    SIAM Journal of Mathematical Analysis 46 (2014), 3891-3912 (+ W. Han, S. Migórski).

  121. On the Behavior of the Solution of a Viscoplastic Contact Problem,
    Quarterly of Applied Mathematics 72 (2014), 625-647 (+ M. Barboteu, A. Matei).

  122. Analysis of Two Quasistatic History-dependent Contact Models,
    Discrete and Continuous Dynamic Systems - Series B 19 (2014), 2425-2445 (+ X. Cheng, S. Migórski, A. Ochal).

  123. Penalization of History-Dependent Variational Inequalities,
    European Journal of Applied Mathematics 25 (2014), 155-176 (+ F. Patrulescu).

  124. Numerical Analysis of History-dependent Quasivariational Inequalities with Applications in Contact Mechanics,
    ESAIM Mathematical Modelling and Numerical Analysis (M2AN) 48 (2014), 919-942 (+ K. Kazmi, M. Barboteu, W. Han).

  125. A Model of a Spring-Mass-Damper System with Temperature-dependent Friction,
    European Journal of Applied Mathematics 25 (2014), 45-64 (+ S. Migórski, A. Ochal, M. Shillor).

  126. Analysis of a Piezoelectric Contact Problem with Subdifferential Boundary Conditions,
    Proceedings of the Royal Society of Edinburgh - Section A, Mathematics 144 (2014), 1007-1025
    (+ S. Migórski, A. Ochal).

  127. A Viscoplastic Contact Problem with Normal Compliance, Unilateral Constraint and Memory Term,
    Applied Mathematics & Optimization 69 (2014), 175-198 (+F. Patrulescu, A. Farcas).

  128. Viscoplastic Contact Problems with Normal Compliance and Memory Term,
    IMA Journal of Applied Mathematics 79 (2014), 1180-1200 (+ M. Barboteu, F. Patrulescu, A. Ramadan).

  129. Nonlinear Problems with p(.)-growth Conditions and Applications to Antiplane Contact Models,
    Advanced Nonlinear Studies 14 (2014), 295-313 (+ M. Boureanu, A. Matei).

  130. Analysis of a History-dependent Frictional Contact Problem,
    Applicable Analysis 93 (2014), 428-444 (+ A. Farcas).

  131. A viscoplastic Contact Problem with a Normal Compliance with Limited Penetration Condition and History-dependent Stiffness Coefficient,
    Communications in Pure and Appled Analysis 13 (2014), 371-387 (+M. Shillor).

  132. Modelling and Numerical Simulation of a Unilateral Contact problem with Slip-dependent Friction,
    Machine Dynamics Research 37 (2013), 15-28 (+ M. Barboteu, D. Danan)

  133. Analysis of a Viscoelastic Contact Problem with Multivalued Normal Compliance and Unilateral Constraint,
    Computer Methods in Applied Mechanics and Engineering 264 (2013), 12–22 (+ W. Han, M. Barboteu).

  134. History-dependent Hemivariational Inequalities with Applications to Contact Mechanics,
    Annales de l'Université de Bucarest, Math. Series 4 (LXII) (2013), 193–212 (+ S. Migórski, A. Ochal).

  135. Asymptotic Analysis of a Quasistatic Frictional Contact Problem withWear,
    Journal of Mathematical Analysis and Applications 401 (2013), 641–653 (+ A. Rodriguez-Arós, J. M. Viño).

  136. A Dynamic Electro-Elastic Problem,
    Zeitschrift für Angewandte Matematik und Mechanik (ZAMM) 93 (2013), 612–632 (+ K. Kazmi, M. Barboteu, W. Han).

  137. Dual Formulation of a Viscoplastic Contact Problem with Unilateral Constraint,
    Discrete and Continuous Dynamic Systems - Series S 6 (2013), 1587–1598 (+ A. Matei).

  138. Analysis of Quasistatic Viscoplastic Contact Problems with Normal Compliance,
    Quarterly Journal of Mechanics and Applied Mathematics 65 (2012), 555-579
    (+ M. Barboteu, A. Matei).

  139. Weak Solvability of Two Quasistatic Viscoelastic Contact Problems,
    Mathematics and Mechanics of Solids 18 (2012), 745–759 (+ S. Migórski, A. Ochal).

  140. An Elastic Contact Problem with Normal Compliance and Memory Term,
    Machine Dynamics Research 36 (2012), 15–25 (+ M. Barboteu, F. Patrulescu, A. Ramadan).

  141. Analysis of a History-dependent Frictionless Contact Problem,
    Mathematics and Mechanics of Solids 18 (2012), 409–430. (+ F. Patrulescu).

  142. A History-dependent Contact Problem with Unilateral Constraint,
    Mathematics and its Applications 2(2012),105–111 (+A.Farcas,F. Patrulescu).

  143. Analysis and Numerical Solution of a Piezoelectric Frictional Contact Problem,
    Applied Mathematical Modelling 36(2012), 4483–4501 (+M. Barboteu, W. Han, K. Kazmi).

  144. Analysis of a Contact Problem for Electro-elastic-visco-plastic Materials,
    Communications on Pure and Applied Analysis 11 (2012), 1185-1203 (+M. Boureanu, A. Matei).

  145. The Control Variational Method for Beams in Contact with Deformable Obstacles,<
    Zeitschrift für Angewandte Matematik und Mechanik(ZAMM), 92 (2012), 25-40  (+M. Barboteu, D. Tiba).

  146. A Damageable Spring,
    Machine Dynamics Research 35 (2011), 82-96 (+J.C. Chipman, A roux, M. Shillor).

  147. A Contact Problem with Normal Compliance, Penetration and Unilateral Constraint Finite,
    Machine Dynamics Research 35 (2011), 60-69 (+M. Barboteu).

  148. Analysis of a Quasistatic Contact Problem for Piezoelectric Materials,
    Journal of Mathematical Analysis and Applications, 382 (2011), 701-713 (+S. Migórski, A. Ochal).

  149. History-dependent Subdifferential Inclusions and Hemivariational Inequalities in Contact
    Mechanics,
    Nonlinear Analysis Series B: Real World Applications, 12 (2011), 3384-3396
    (+S. Migórski, A. Ochal).

  150. History-dependent Quasivariational Inequalities arising in Contact Mechanics,
    European Journal of Applied Mathematics 22 (2011), pp 471-491 (+A. Matei).

  151. Analysis of a Frictional Contact Problem for Viscoelastic Materials with Long Memory,
    Discrete and Continuous Dynamic Systems - Series B, 15 (2011), 687-705 (+S. Migorski, A. Ochal).

  152. Analysis of Lumped Models with Contact and Friction,
    Journal of Applied Mathematics and Physics (ZAMP), 62 (2011), 99-113 (+S. Migorski, A. Ochal).

  153. Regularity of Solutions to Dynamic Contact Problems,
    Machine Dynamics Problems, 34 (2010), 5-13 (+M. Barboteu).

  154. The Control Variational Method for Elastic Contact Problems,
    Annals of AOSR, Series on Mathematics and its Applications 2 (2010), 99-122 (+D. Tiba).

  155. Analysis of a Dynamic Contact Problem for Electro-viscoelastic Cylinders,
    Nonlinear Analysis, Series A : Theory, Methods & Applications,73 (2010), 1221-1238 (+S. Migorski, A. Ochal).

  156. A Dynamic Frictional Contact Problem for Piezoelectric Materials,
    Journal of Mathematical Analysis and Applications} 361 (2010), 161-176 (+S. Migorski, A. Ochal).

  157. Variational Analysis of Static Frictional Contact Problems for Electro-elastic Materials,
    Mathematische Nachrichten 283 (2010), 1314-1335 (+S. Migorski, A. Ochal).

  158. A Dynamic Elastic-visco-plastic Unilateral Contact Problem with Normal Damped Response and Coulomb Friction,
    European Journal of Applied Mathematics 21 (2010), 229-251 (+. C. Eck, J. Jarusek).

  159. Weak solvability of Antiplane Frictional ContactProblems for Elastic Cylinders,
    Nonlinear Analysis Series B: Real World Applications 11 (2010), 172-183 (+ S. Migórski, A. Ochal).

  160. On the Solvability of Dynamic Elastic-visco-plastic Contact Problems with Adhesion,
    Annals of AOSR, Series on Mathematics and its Applications1 (2009), 191-214 (+ J. Jarušek).

  161. Solvability of a Dynamic Contact Problem between aPiezoelectric Body and a Conductive Foundation,
    Applied Mathematics and Computation 215 (2009), 2978-2991 (+ M. Barboteu).

  162. An Evolution Problem in Nonsmooth Elasto-Viscoplasticity,
    Nonlinear Analysis Series A: Theory, Methods & Applications 71 (2009) 2766-2771 (+ S. Migórski, A. Ochal).

  163. The Control Variational Method for Contact of Euler-Bernoulli Beans,
    Bulletin of the Transilvania University of Brasov, Series III : Mathematics,Informatics, Physics 2 (2009), 127-136 (+ D. Tiba).

  164. Analysis and Numerical Approach of a Piezoelectric Contact Problem,
    Annals of AOSR, Series on Mathematics and its Applications 1(2009), 7-30. (+ M. Barboteu).

  165. Modelling and Analysis of the Unilateral Contact of a Piezoelectric Body with a Conductive Support,
    Journal of Mathematical Analysis and Applications, 358 (2009), 110-124 (+ M. Barboteu).

  166. Modeling and Analysis of an Antiplane Piezoelectric Contact Problem,
    Mathematical Models and Methods in Applied Sciences(M3AS) 19 (2009), 1295-1324 (+ S. Migórski, A. Ochal).

  167. Quasistatic Adhesive Contact of Piezoelectric Cylinders,
    Nonlinear Analysis : Modelling and Control 14 (2009), 123-142 (+ L. Chouchane).

  168. Solvability of Dynamic Antiplane Frictional Contact Problems for Viscoelastic Cylinders,
    Nonlinear Analysis 70 (2009), 3738-3748 (+ S. Migórski, A. Ochal).

  169. Weak Solvability of a Piezoelectric Contact Problem,
    European Journal of Applied Mathematics 20 (2009), 145-167 (+ S. Migórski, A. Ochal).

  170. Contact with Adhesion between a Deformable Body and a Foundation,
    The Australian Journal of Mathematical Analysis and Applications 5 (2008), Art 9, 11 pages (+ B. Teniou).

  171. Evolutionary Variational Inequalities with Application in the Study of Antiplane Frictional Contact Problems,
    Mathematical Modelling and Civil Engineering, 3 (2008), 32-39.

  172. A Dynamic Piezoelectric Contact Problem,
    Machine Dynamics Problems 32 (2008), 23-32
    (+ M. Barboteu).

  173. Analysis of an Antiplane Contact Problem with Adhesion for Electro-viscoelastic Materials,
    Nonlinear Analysis : Modelling and Control 137 (2008), 379-395 (+ L. Chouchane, L. Selmani).

  174. Analysis of a Dynamic Elastic-viscoplastic Contact Problem with Friction,
    Discrete and Continuous Dynamic Systems - Serie B, 10 (2008), 887-902 (+ S. Migorski, A. Ochal).

  175. Integrodifferential Hemivariational Inequalities with Applications to Viscoelastic Frictional Contact,
    Mathematical Models and Methods in Applied Sciences (M3AS). 18 (2008), 271-290
    (+ S. Migorski, A. Ochal).

  176. Analysis of a Frictional Contact Problem with Adhesion,
    Acta Mathematica Universitas Comenianae 77 (2008), 181-198 (+ Z. Lerguet, S. Drabla).

  177. A Model for a Magnetorheological Damper,
    Mathematical and Computer Modelling, 48 (2008), 56-68 (+ J. Bajkowski, J. Nachman, M. Shillor).

  178. A Fixed Point Result with Applications in the Study of Viscoeplastic Frictionless Contact Problems,
    Communications on Pure and Applied Analysis 7 (2008), 645-658 (+ C. Avramescu, A Matei).

  179. On the Solvability of Dynamic Elastic-visco-plastic Contact Problems,
    Zeitschrift für Angewandte Matematik und Mechanik (ZAMM) 88 (2008), 3-22 (+ J. Jarušek).

  180. Analysis of the Dependence between a Temperature and Working Parameters of the MR Damper,
    Mechanics 26 (2007), 149-155 (+J. Bajkowski, M. Bajkowski, W. Grzesikiewicz, M. Shillor, R. Zalewski).

  181. Numerical Analysis of a Frictional Contact Problem for Viscoelastic Materials with Long-term Memory,
    Numerische Mathemätik, 198 (2007), 327-358 (+ A. D. Rodriguez-Aros, J. M.Viaño).

  182. Analysis of an Antiplane Electro-elastic Contact Problem,
    Advances in Mathematical Sciences and Applications 17 (2007), 385-400 (+ M. Dalah, A. Ayadi).

  183. A Frictional Contact Problem for an Electro-Viscoelastic Body,
    Electronic Journal of Differential Equations 170 (2007), 1-16 (+ Z. Lerguet, M. Shillor).

  184. Antiplane Frictional Contact of Electro-viscoelastic Cylinders,
    Electronic Journal of Differential Equations 161 (2007), 1-14 (+ M. Dalah).

  185. An Electro-viscoelastic Contact Problem with Adhesion,
    Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 14 (2007), 577-591 (+ R. Arhab).

  186. Analysis of Two Dynamic Frictionless Contact Problems for Elastic-visco-plastic Materials,
    Electronical Journal of Differential Equations, 55 (2007), 1-17 (+ Y. Ayyad).

  187. An Electro-viscoelastic Frictional Contact Problem with Damage,
    Applicable Analysis, 86 (2007), 503-518 (+ R. Tarraf).

  188. A Frictionless Contact Problem for Electro-elastic-visco-plastic Materials,
    Computer Methods in Applied Mechanics and Engineering, 196 (2007), 3915-3926 (+ W. Han, K. Kazmi).

  189. On a Dynamic Contact Problem for Elastic-visco-plastic Materials,
    Applied Numerical Mathematics, 57 (2007), 498-509 (+ W. Han).

  190. A Model for Adhesive Frictional Contact,
    Machine Dynamics Problems, 30 (2006),158-168 (+ Z. Lerguet).

  191. Analysis of Electro-elastic Frictionless Contact Problems with Adhesion,
    Journal of Applied Mathematics, Art. ID. 64217, 25 pages (+ R. Arhab, R. Tarraf,).

  192. Viscoelastic Frictionless Contact Problems with Adhesion,
    Journal of Inequalities and Applications, 2006, Art. ID. 36130, 22 pages (+ M. Selmani).

  193. Numerical Approximation of a Viscoelastic Frictional Contact Problem,
    C. R. Acad. Sci. Paris, Série II Méc., 334 (2006), 279-284 (+ A. D. Rodríguez-Arós, J. M.Viaño).

  194. An Elastic Contact Problem with Adhesion and Normal Compliance,
    Journal of Applied Analysis, 12 (2006), 17-34 (+ A. Matei).

  195. An Antiplane Contact Problem for Viscoelastic Materials with Long-Term Memory,
    Mathematical Modelling and Analysis, 11 (2006), 213-228 (+C. Niculescu, A. Matei).

  196. A Piezoelectric Contact Problem with Normal Compliance,
    Applicaciones Mathematicae, 32 (2005), 425-442 (+Y. Ouafik).

  197. Numerical Analysis of a Quasistatic Sliding Contact Problem with Wear,
    Journal of Concrete and Applicable Mathematics, 3 (2005),55-74 (+ J. R. Fernández-García, J. M. Viaño).

  198. Elastic Frictionless Contact Problems with Adhesion,
    Advances in Mathematical Sciences and Applications 15 (2005), 49-68 (+T.-V. Hoarau-Mantel).

  199. A Dynamic Viscoelastic Contact Problem with Normal Compliance and Damage,
    Finite Elements in Analysis and Design, 42 (2005)1-24 (+ M. Campo, J.R. Fernández-García, W. Han).

  200. A Class of Integro-Differential Variational Inequalities with Applications to Viscoelastic Contact,
    Mathematical and Computer Modelling, 41 (2005), 1355-1369 (+ A. D.Rodríguez-Arós, J. M. Viaño).

  201. A Mixed Variational Formulation for the Signorini Frictionless Problem in Viscoplasticity,
    Ann. Sci. Univ. Ovidius Constanta, 12(2004), 157-170 (+ A. Matei).

  202. Quasistatic Frictional Contact of a Viscoelastic Piezoelectric Body,
    Advances in Mathematical Sciences and Applications 14 (2004), 613-631(+ El H. Essoufi).

  203. Stress Formulation for Frictionless Contact of an Elastic-perfectly-plastic Body,
    Applicable Analysis, 83 (2004), 1157-1170 (+ N. Renon, M. Shillor).

  204. A Piezoelectric Contact Problem with Slip Dependent Coefficient of Friction,
    Mathematical Modelling and Analysis, 9 (2004), 229-242 (+ El H. Essoufi).

  205. A Convergence Result for Evolutionary Variational Inequalities and Applications to Antiplane Frictional Contact Problems,
    Applicaciones Mathematicae, 31 (2004), 55-67 (+ M. Ait Mansour).

  206. Creep Formulation of a Quasistatic Frictional Contact Problem,
    Advances in Nonlinear Variational Inequalities, 7 (2004), 1-27 (+T.-V. Hoarau-Mantel, J. M. Viaño & A. D. Rodriguez-Aros).

  207. A Class of Evolutionary Variational Inequalities with Volterra-type Integral Term,
    Mathematical Models and Methods in Applied Sciences (M3AS), 14 (2004), 555-577 (+ A. D. Rodríguez-Arós, J. M. Viaño).

  208. A Quasistatic Viscoplastic Contact Problem with Normal Compliance and Friction,
    IMA Journal of Applied Mathematics, 69 (2004),463-482 (+ A. Amassad, C. Fabre).

  209. Numerical Analysis of a Frictionless Viscoelastic Contact Problem with Normal Damped Response,
    Computers et Mathematics with Applications, 47 (2004), 549-568 (+ J. R. Fernandez-Garcia).

  210. Quasistatic Viscoelastic Contact with Friction and Wear Diffusion,
    Quart. Appl. Math,. 62 2004), 379-399 (+ M. Shillor, J. J.Telega).

  211. Dynamic Frictionless Contact with Adhesion,
    Journal of Applied Mathematics and Physics (ZAMP), 55 (2004), 32-47 (+ O. Chau, M. Shillor).

  212. On the Frictionless Unilateral Contact of Two Viscoelastic Bodies,
    Journal of Applied Mathematics, 11 (2003), 575-603(+ M. Barboteu, T.-V.Hoarau-Mantel).

  213. Analysis of Viscoelastic Contact with Normal Compliance, Friction and Wear Diffusion,
    C.R. Acad. Sci. Paris, Série II Méc, 331(2003), 395-400 (+ M. Shillor, J. J. Telega).

  214. Analysis and Numerical Simulations of a Dynamic Contact Problem with Adhesion,
    Mathematical and Computer Modelling, 37(2003), 1317-1333 (+ J. R. Fernández-García, M. Shillor).

  215. Variational and Numerical Analysis of a Quasistatic Viscoelastic Contact Problem with Adhesion,
    Journal of Computational and Applied Mathematics, 159 (2003), 431-465 (+ O. Chau, J. R. Fernández-García, M. Shillor ).

  216. Creep Formulation of the Signorini Frictionless Contact,
    Advances in Nonlinear Variational Inequalities, 6 (2003), 23-43 (+ A. D. Rodriguez-Aros, J. M. Viaño).

  217. Variational and Numerical Analysis of a Dynamic Frictionless Contact Problem with Adhesion,
    Journal of Computational and Applied Mathematics, 156 2003), 127-157 (+ O. Chau, J. R Fernández-García, W. Han ).

  218. Variational and Numerical Analysis of the Signorini's Contact Problem in Viscoplasticity with Damage,
    Journal of Applied Mathematics, 2 (2003), 87-114 (+ J. R. Fernández-García).

  219. A Fixed Point Result for Operators Defined on Spaces of Vector Valued Continuous Functions,
    Ann. Univ. Craiova, Math-Info 29(2002), 19-22 (+ A. Matei).

  220. Viscoelastic Sliding Contact Problems with Wear,
    Mathematical and Computer Modelling, 36 (2002), 861-874 (+ C. Ciulcu, T.-V. Hoarau-Mantel).

  221. Elastic Antiplane Contact Problem with Adhesion,
    Journal of Applied Mathematics and Physics ( ZAMP) 53 (2002), 962-972(+ A. Matei)

  222. A Viscoelastic Frictionless Contact Problem with Normal Compliance and Adhesion,
    Ann. Univ Bucarest, Math. 51 (2002), 131-142 (+ N. Hemici, B.Awbi)

  223. Numerical Analysis of a Bilateral Frictional Contact Problem for Linearly Elastic Materials,
    IMA Journal of Numerical Analysis, 22 (2002), 407-436 (+ M. Barboteu, W. Han).

  224. Quasistatic Frictional Problems for Elastic and Viscoelastic Materials,
    Applications of Mathematics, 47 (2002), 341-360 (+ O. Chau, D. Motreanu)

  225. A Frictionless Contact Problem for Elastic-Visco-Plastic Materials with Normal Compliance and Damage,
    Computer Methods in Applied Mechanics and Engineering, 191 (2002), 5007-5026 (+ O. Chau, J. R. Fernández-García, W. Han)

  226. Quasistatic elastic-visco-plastic problems with friction,
    Ann. Univ. Bucarest , 51 (2002), 37-52 (+ L. Jianu, A. Matei).

  227. Elastic Beam in Adhesive Contact,
    Int. J. Solids and Structures, 39 (2002), 1145-1164 (+ W. Han, K. Kuttler, M. Shillor).

  228. A Dynamic Frictional Contact Problem with  Normal Damped Response,
    Acta Applicandae Mathematicae , 71 (2002), 159-178 (+ O. Chau, W. Han).

  229. A Frictionless Contact Problem for Viscoelastic Materials,
    Journal of Applied Mathematics, 2 (2002), 1-21 (+ M. Barboteu, W. Han).

  230. A Quasistatic Contact Problem with Slip Dependent Coefficient of Friction for Elastic Materials,
    Journal of Applied Analysis, 8 (2002) 59-80, (+ C. Corneschi, T.-V. Hoarau-Mantel).

  231. A Frictionless Contact Problem for Elastic-Viscoplastic Materials with Normal Compliance,
    Numerische Mathemätik, 90 (2002), 689-719,  (+ J. R. Fernández-García, J. M. Viaño).

  232. Variational Analysis of a Frictional Contact Problem for the Viscoelastic Bodies,
    Intern. Math. Journal, 1 (2002), 333-348 (+ B. Awbi, O. Chau).

  233. Analysis and Numerical Computation in the Study of Pre-stressed Composite Assemblies,
    Rev. Roum. Sci. Tech.-Méc. Appl., 46 (2001) 53-74 (+ F. Martinez, J. M. Segura).

  234. A Viscoelastic  Frictionless Contact Problem with Adhesion,
    Applicable Analysis , 80 (2001), 233-255 (+ L. Jianu, M. Shillor).

  235. On the Signorini Frictionless Contact Problem for Linear Viscoelastic Materials,
    Applicable Analysis, 80 (2001), 177-199 (+ A. Matei, V. V. Motreanu).

  236. Differential Inclusions arising in Contact Problems with Elastic-Visco-Plastic materials,
    Ann. Univ. Craiova, Math-Info. 28 (2001), 67-78 (+ A. Stanca).

  237. Variational and Numerical Analysis of a Quasistatic Viscoelastic Problem with Normal Compliance, Friction and Damage,
    Journal of Computational and Applied Mathematics, 137 (2001), 377-398 (+ W. Han, M. Shillor).

  238. Variational and Numerical Analysis of a Frictionless Contact Problem for Elastic-Viscoplastic Materials with Internal State Variable,
    Quart. J. Mech. Appl. Math., 54 (2001), 501-522 (+ J. R. Fernández-García, W. Han, J. M. Viaño).

  239. Time-dependent Variational Inequalities for Viscoelastic Contact Problems,
    Journal of Computational and Applied Mathematics, 136 (2001), 369-387 (+ W. Han).

  240. Numerical Analysis of a Contact Problem in Rate-type Viscoplasticity,
    Numerical Functional Analysis and Optimization, 22 (2001), 505-527 (+ J. Chen, W. Han).

  241. Variational Analysis of Quasistatic Viscoplastic Contact Problems with Friction,
    Communications in Applied Analysis, 5 (2001), 135-151 (+ M. Shillor).

  242. A Quasistatic Antiplane Contact Problem With Slip Dependent Friction,
    Advances in Nonlinear Variational Inequalities, 4 (2001), 1-21 (+ A. Matei, V. V. Motreanu).

  243. Analysis of an Elastic Contact Problem with Slip Dependent Coefficient of Friction,
    Mathematical Inequalities & Applications, 4 (2001), 465-479 (+ C. Ciulcu, D. Motreanu).

  244. Numerical Analysis and Simulations of Quasistatic Frictionless Contact Problems,
    Int. J. Appl. Math. and Comp. Sci., 11 (2001), 205-222 (+ J. R. Fernández-García, W. Han, M. Shillor).

  245. Quasistatic Frictional Contact and Wear of a Beam,
    Dynamics of Continuous, Discrete and Impulsive Systems, 8 (2001), 201-218 (+ M. Shillor, R. Touzani).

  246. Analysis and Approximation of a Viscoelastic Contact Problem with Slip dependent Friction,
    Dynamics of Continuous, Discrete and Impulsive Systems, 8 (2001), 153-174 (+ O. Chau, W. Han).

  247. A Class of Quasivariational Inequalities with Applications to Contact Problems,
    Advances in Nonlinear Variational Inequalities, 4(2001), 1-22 (+ O. Chau, D. Motreanu).

  248. Dual Formulation of a Quasistatic Viscoelastic Contact Problem with Tresca's Friction Law,
    Applicable Analysis, 79 (2001), 1-20 (+ B. Awbi, M. Shillor).

  249. A Nonlinear Evolution Inclusion in Perfect Plasticity with Friction,
    Acta Math. Univ. Comenianae, LXX (2001), 1-14(+ A. Amassad, M. Shillor).

  250. A Quasistatic Frictionless Contact Problem with Normal Compliance,
    Ann. Univ. Craiova, Math-Info. 27 (2000), 43-56 (+ A. Matei).

  251. Numerical Analysis of a Class of Evolution Systems Arising in Viscoplasticity,
    Computational and Applied Mathematics, 19 (2000),279-306 (+ J. Chen, W. Han).

  252. Numerical Analysis of a Quasistatic Problem of Sliding Frictional Contact with Wear,
    Methods and Applications of Analysis, 7 (2000) 687-704 (+ J. Chen, W. Han).

  253. A Viscoelastic Contact Problem with Normal Damped Response and Friction,
    Annales Polonici Mathematici, LXXV (2000), 233-24(+ B. Awbi, El H. Essoufi).

  254. Dynamic Frictionless Contact Problems with Normal Compliance,
    Int. J. Differ. Equ. Appl. 1 (2000), 335-361(+ O. Chau, El H. Essoufi, W. Han).

  255. Analyse numérique d'un problème élasto-viscoplastique de contact sans frottement avec compliance normale,
    C. R. Acad. Sci. Paris, Serie I Math., 331 (2000), 323-328 (+ J. R. Fernández-García, J. M. Viano).

  256. A Convergence Result in the Study of Frictionless Viscoplastic Contact Problems,
    Rev. Roum. Math. Pures et Appl., 45 (2000),343-351.

  257. Analysis of a Quasistatic Viscoelastic Problem with Friction and Damage,
    Adv.  Math. Sci. Appl., 10 (2000), 173-189(+ M. Rochdi, M. Shillor).

  258. Quasivariational Inequalities and Applications in Frictional Contact Problems with Normal Compliance,
    Adv. Math. Sci. Appl., 10(2000), 103-118 (+ D. Motreanu).

  259. Numerical Analysis of a Nonlinear Evolutionary  System with Applications in Viscoplasticity,
    SIAM Journal of Numerical Analysis, 38 (2000), 1171-1199 (+ J. Chen, W. Han).

  260. Evolutionary Variational Inequalities Arising in Viscoelastic Contact Problems,
    SIAM Journal of Numerical Analysis, 38 (2000), 556-579 (+ W. Han).

  261. Numerical Analysis of a Frictionless Contact Problem for Elastic-Viscoplastic Materials,
    Computer Methods in Applied Mechanics and Engineering, 190 (2000), 179-191 (+ W. Han).

  262. Analysis of a Quasistatic Displacement-Traction Problem for Viscoelastic Materials,
    Mathematical and Computer Modelling, 32(2000), 453-464 (+ O. Chau, L. Selmani).

  263. Abstract Evolution Equations for Viscoelastic Frictional Contact Problems,
    Journal of Applied Mathematics and Physics (ZAMP), 51(2000), 128--235 (+ B. Awbi, M. Rochdi).

  264. Entropy Solutions in the Study of Antiplane Shear Deformations for Elastic Solids,
    Mathematical Models and Methods in Applied Sciences (M3AS), 10 (2000),96-126 (+ F. Andreu, J. M. Mazon).

  265. A Quasistatic Viscoelastic Contact Problem with Friction,
    Int. J. Engng. Sci., 38 (2000), 1517--1533 (+ M. Shillor).

  266. Evolutionary Variational Inequalites arising in Quasistatic Frictional Problems for Elastic Materials,
    Abstract and Applied Analysis, 4 (1999), 255-279 (+ D. Motreanu).

  267. Analysis and Numerical Approximation of an Elastic Frictional Contact Problem with Normal Compliance,
    Applicationes Mathematicae, 26 (1999), 415-435 (+ W. Han).

  268. A Contact Problem for Bingham Fluid with Friction,
    Applicable Analysis, 72 (1999), 469-484 (+ B. Awbi, M. Shillor).

  269. Variational Analysis of a Frictional Contact Problem for the Bingham Fluid,
    Int. J. Appl. Math. and Comp. Sci., 9 (1999), 101-115 (+ B. Awbi, L. Selmani).

  270. Analysis of a Signorini Problem with Friction,
    IMA Journal of Applied Mathematics, 62 (1999), 1-18 (+ S. Drabla).

  271. A Quasistatic Contact Problem with Slip Dependent Coefficient of Friction,
    Math. Meth. Appl. Sci., 22 (1999), 267-284 (+ A. Amassad, M. Shillor).

  272. A Quasistatic Contact Problem for an Elastic Perfectly Plastic Body with Tresca's Friction,
    Nonlinear Analysis, 35 (1999), 95-109 (+ A. Amassad, M. Shillor).

  273. A Quasistatic Viscoelastic Contact Problem with Normal Compliance and Friction,
    Journal of Elasticity, 51 (1998), 105-126 (+ M. Rochdi, M. Shillor).

  274. A Quasistatic Contact Problem with Directional Friction and Damped Response,
    Applicable Analysis, 68 (1998), 409-422 (+ M. Rochdi, M. Shillor).

  275. Analysis of some Frictionless Contact Problems for Elastic Bodies,
    Ann. Pol. Mat., LXIX (1998), 75-88 (+ S. Drabla, B. Teniou).

  276. On Rate-type Viscoplastic Problems with Linear Boundary Conditions,
    Mathematische Nachrichten, 193 (1998), 119-135(+ M. Rochdi).

  277. Analysis of some Nonlinear Evolution Systems arising in Rate-Type Viscoplasticity,
    Discrete and Continuous Dynamical Systems,Special issue (1998), 55-72 (+ A. Amassad).

  278. A Quasistatic Contact Problem for an Elastoplastic Rod,
    J. Math. Anal. Appl. 217 (1998), 579-596 (+ M. Shillor).

  279. Analysis of a Quasistatic Viscoplastic Problem involving Tresca Friction Law,
    Discrete and Continuous Dynamical Systems, 4 (1998), 55-72 (+ A. Amassad).

  280. On Existence and Behaviour of the Solution for a Class of Nonlinear Evolution Systems,
    Rev. Roum. Math. Pures et Appl., 42(1997), 659-667 (+ M. Rochdi).

  281. On a Frictionless Contact Problem for Elastic-Viscoplastic materials with Internal State Variables,
    Mathematical and Computer Modelling, 26 (1997), 31-47 (+ S. Drabla, M. Rochdi).

  282. On Frictionless Contact between Two Elastic-Viscoplastic Bodies,
    Quart. J. Mech. Appl. Math., 50 (1997), 481-496 (+ M. Rochdi).

  283. On a Contact Problem for Elastic-Viscoplastic Bodies,
    Nonlinear Analysis, Theory, Methods and  Applications, 29 (1997), 1037-1050.

  284. On a Quasistatic Rate-Type Viscoplastic Problem with Friction,
    Ann. Sci. Univ. Ovidius, 5 (1996), 1-12 (+ A. Amassad).

  285. Variational Analysis of an Elastic Problem involving Tresca Friction Law,
    Bull. Sci. Univ. Baia-Mare, Série B, 12 (1996), 31-40(+ A. Amassad, R. Rosca).

  286. Sur l'existence et l'approximation numérique de la solution pour un problème de contact élastique,
    Acta Technica Napocensis, 37(1994), 37-46 (+ A. Nouailler, R. Touzani).

  287. Error Estimates of an Iterative Method for a Quasistatic Elastic-Visco-Plastic Problem,
    Applications of Mathematics, 39 (1994), 401-414 (+ I. Rosca).

  288. A Contractive Method in the Study of Nonlinear Operators in Hilbert Spaces,
    St. Cerc. Mat. 46 (1994), 291-301 (+ I. Rosca).

  289. A Monotony Method in Quasistatic Rate-Type Viscoplasticity,
    Theoretical and Applied Mechanics, 19 (1993), 39-46 (+ S. Djabi).

  290. Error Estimates of a Numerical Method for a Class of Nonlinear Evolution Equations,
    Revista Columbiana de Matematicas, 27 (1993), 253-265.

  291. A Fixed Point Method in Quasistatic Rate-Type Viscoplasticity,
    Appl. Math. and Comp. Sci., 3 (1993), 269-279 (+ S. Djabi).

  292. On Existence and Behaviour of the Solution in Quasistatic Processes for Rate-Type Viscoplastic Models,
    Ann. Sci. Univ. Blaise Pascal, Sér. Math., 28 (1992), 255-271.

  293. Some Remarks concerning a Class of Nonlinear Evolution Equations in Hilbert Spaces,
    Ann. Sci. Univ. Blaise Pascal, Sér. Math., 25(1990), 13-20.

  294. Some Remarks on the Behaviour of the Solution in Dynamic Processes for Rate-Type Models,
    Journal of Applied Mathematics and Physics (ZAMP), 41 (1990), 656-668.

  295. Evolution Problems for a Class of Thermo-Viscoplastic Materials,
    St. Cerc. Mat., 42 (1990), 57-72.

  296. Quasistatic Processes for Elastic-Visco-Plastic Materials with Internal State Variables,
    Ann. Sci. Univ. Blaise Pascal, Sér. Math., 25 (1989), 47-60.

  297. A Fixed Point Method in Viscoplasticity with Strain Hardening,
    Rev. Roum. Math. Pures et Appl., 34 (1989),553-560.

  298. On Existence and Behaviour of the Solution of two Uncoupled Thermo-Elastic-Visco-Plastic Problems,
    Ann. Univ. Bucarest, Math., 38 (1989), 56-65.

  299. On Existence and Uniqueness of the Solution of a Dynamic Elastic-Visco-Plastic Problem,
    Ann. Univ. Bucarest, Math., 37 (1988),53-59.

  300. Quasistatic Processes for Elastic-Visco-Plastic Materials,
    Quart. Appl. Maths., 46 (1988), 229-243 (+ I. R. Ionescu).

  301. On the Energetic Space for a Linear Operator,
    Ann. Univ. Bucarest, Math., 35 (1986), 19-24 (+ I. R. Ionescu, I. Rosca).

  302. The Blocking Property in the Study of the Bingham Fluid,
    Int. J. Engng. Sci. 24 (1986), 289-297 (+ I. R. Ionescu).

  303. Une méthode variationnelle pour une classe d'équations non-linéaires dans les espaces de Hilbert,
    Bull. Math. Soc. Sci. Math. Roumanie, 30 (1986), 47-55.

  304. A Variational Method in the Study of the Equation Au+ (Ku)  f,
    Ann. Univ. Bucarest, Math., 34 (1985), 52-60 (+ I. Rosca).

  305. A Variational Method for Nonlinear Multivalued Operators,
    Nonlinear Analysis, Theory, Methods and  Applications, 9 (1985), 259-273 (+ I. R. Ionescu, I. Rosca).

  306. A Variational Formulation of a Boundary Value Problem in the Study of the Bingham Fluid,
    Rev. Roum. Sci.Tech.-Méc. Appl., 30(1985), 357-363 (+ I. R. Ionescu).

  307. On the existence of optimal solutions of the optical Bloch equations,
    Ann. Univ. Timisoara, St. Fiz., 20 (1982), 9-16 (+ V. Sofonea).

  308. Sur l'écoulement de deux fluides de Bingham dans une conduite,
    Rev. Roum. Sci. Tech.-Mec. Appl., 27 (1982), 45-56.

  309. Variational Inequalities with Blocking Property,
    Int. J. Engrg. Sci., 20 (1982), 1001-1007.

  310. Sur l'écoulement de Poisseuille d'un fluide rigide-viscoplastique de Bingham,
    St. Cerc. Mat. 34 (1982), 388-394.

haut