|   | 
 Articles
dans des revues
 
 
 
        
          
            | 
              Well-posedness and Convergence Results for History-dependent Inclusions, Numerical Functional Analysis and Optimization, https://doi.org/10.1080/01630563.2024.2423246 (+D. Tarzia).
 A Penalty Method for Elliptic Variational-hemivariational Inequalities, Axioms 2024, 13, 721, https://doi.org/10.3390/axioms13100721 (+D. Tarzia).
 Modelling and Analysis of a Viscoelastic Contact Problem with Unilateral Constraints, Journal of the Spanish Society of Applied Mathematics (SeMA Journal), http://doi.org/10.1007/s40324-024-00365-5 (+D. Tarzia).
 Well-posedness and Convergence Results for Elliptic Hemivariational Inequalities, Applied Set-Valued Analysis and Optimization 7 (2025), 1-21. (+D.Tarzia).
 Convergence Results for History-dependent Variational Inequalities, Axioms 2024, 13, 316, https://doi.org/10.3390/axioms130150316 (+D.Tarzia).
 A Two-dimensional Elastic Contact Problem with Unilateral Constraints,Mathematics and Mechanics of Solids, 29 (2024), 2016-2035. (+A. Rodriguez Aros).
 Convergence Criteria for Fixed Point Problems and
Differential Equations, Mathematics 2024, 12, 395, https://doi.org/10.3390/math12030395.
(+D. Tarzia).
 A Convergence Criterion for a Class of Stationary
Inclusions in Hilbert Spaces, Axioms 2024, 13, 52, https://doi.org/10.3390/axioms13010052.
(+D. Tarzia).
 A Convergence Criterion for Elliptic Variational
Inequalities, Applicable Analysis 103 (2024), 1810-1830 (+C. Gariboldi, A. Ochal, D.
Tarzia).
 Duality Arguments in the Analysis of a~Viscoelastic
Contact Problem, Communications in Nonlinear Science and Numerical Simulation 128
(2024), Paper No. 107581, 14 pp. (+P. Bartman, A. Ochal).
 Modelling, Analysis and Numerical Simulation of a
Spring-Rods System with Unilateral Constraints, Mathematics and Mechanics of Solids 29 (2024), 246-263 (+A. Ochal, W.
Przkadka, D. Tarzia).
 Analysis and Control of a General Elliptic
Variational-Hemivariational Inequality, Minimax Theory and its Applications 9 (2024), 253-270 (+W. Han).
 Convergence Analysis for Elliptic Quasivariational
Inequalities, Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 74 (2023),
Paper No. 130, 18 pp. (+M. Barboteu).
 Convergence Criteria, Well-posedness Concepts and
Applications, Mathematics and its Applications, Annals of AOSR 15 (2023), 308-329
(+D. Tarzia).
 Well-posed Constrainted Problems with Applications in
Contact Mechanics, Nonlinear Analysis Series B, Real Word Applications 72 (2023), Paper
No. 103841, 18 pp. (+M. Barboteu).
 Well-posedness of a Mixed Hemivariational-Variational
Problem, Fixed Point Theory 24 (2023), 721-742 (+A. Matei).
 On the Well-posedness of Variational-hemivariational
Inequalities and Associated Fixed point Problems, Journal of Nonlinear and Variational Analysis} 6 (2022), 567-584.
(+R. Hu).
 Numerical Analysis of a General Elliptic
Variational-Hemivariational Inequality, Journal of Nonlinear and Variational Analysis 6 (2022), 517-534
(+W. Han).
 A Differential Variational Inequality in the Study of
Contact Problems with Wear, Nonlinear Analysis Series B, Real Word Applications 67 (2022), Paper
No. 103619, 19 pp. (+T. Chen, N. Huang).
 Monotonicity Arguments for
Variational-Hemivariational Inequalities in Hilbert Spaces, Axioms 2022, 11, 136, https://doi.org/10.3390/axioms11030136.
 Tykhonov Well-posedness of
Variational-Hemivariational Inequalities and Associated Minimization
Problems, Journal of Nonlinear and Convex Analysis 24 (2023), 759-777 (+R. Hu,
X. Luo, Y. Xiao).
 A History-dependent Inclusion with Applications in
Contact Mechanics, Numerical Functional Analysis and Optimization 43 (2022), 497-521
(+T. Chen).
 Tykhonov Well-posedness of Fixed Point Problems in
Contact Mechanics, Fixed Point Theory and Algorithms for Sciences and Engineering (2022),
Paper No. 11, 25 pp.
 Levitin-Polyak well-posedness of
variational-hemivariational inequalities, Communications in Nonlinear Science and Numerical Simulation}109
(2022), Paper No. 106324, 17 pp. (+R. Hu, H. Huang, Y. Xiao).
 Duality Arguments for Well-posedness of
History-dependent Variational Inequalities, Electronic Journal of Differential Equations (2022) Paper No. 3, 10 pp.
(+R. Hu).
 History-dependent Operators and Prox-regular Sweeping
Processes, Fixed Point Theory and Algorithms for Sciences and Engineering 109
(2022) Paper No. 106324, 17 pp. (+F. Nacry).
 Generalized Well-posedness and Convergence for a
Class of Hemivariational Inequalities, Journal of Mathematical Analysis and Applications 507 (2022), Paper No.
125839, 23 pp.(+J. Cen, C. Min, S. Zeng).
 A Fixed Point Approach of Variational-Hemivariational
Inequalities, Carpathian Journal of Mathematics} 38 (2022), 573-581. (+R. Hu, Y. Xiao).
 Tykhonov Triples and Convergence Analysis for an
Inclusion Problem, Bulletin Mathématique la Société Mathématique de
Roumanie 65 (2022), 73-96.
 Minimization Arguments in Analysis of
Variational-Hemivariational Inequalities, Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 73 (2022),
Paper No. 6, 18 pp.(+W. Han)
 Analysis and Control of an Electro-Elastic, Mathematics and Mechanics of Solids 27 (2022), 813-827.(+T. Chen, R. Hu).
 Implicit Sweeping Process Arguments in Contact
Mechanics, Matematica Aplicada, Computacional e Industrial 8 (2021), 11-14
  Weak Formulations of Quasistatic Frictional Contact
Problems, Communications in Nonlinear Science and Numerical Simulation 101
(2021), Paper No. 105888, 14 pp. (+Y. Xiao).
 Analysis and Control of Stationary Inclusions in
Contact Mechanics, Nonlinear Analysis Series B, Real Word Applications
61 (2021), Paper No. 103335, 20 pp. 
 A Generalized Penalty Method for Differential
Variational-hemivariational Inequalities,Acta Mathematica Scientia Series B 42 (2022), 247--264.(+L. Lu, L. Li)
 Generalized Penalty Method for History-dependent
Variational-Hemivariational Inequalities, Nonlinear Analysis Series B, Real Word Applications} 61 (2021), Paper
No. 103320, 20 pp. (+Y. Xiao, S. Zeng).
 A History-dependent Sweeping Processes in Contact
Mechanics,Journal of Convex Analysis 29 (2022), 77-100(+F. Nacry).
 Tykhonov Well-posedness of a Heat Transfer Problem
with Unilateral Constraints, Applications of Mathematics 67 (2022), 167-197 (+
D.A. Tarzia).
 Tykhonov Well-posedness of a Mixed Variational
Problem, Optimization,
71 (2022), 461-581, (+ D. Cai, Y. Xiao)
https://doi.org/10.1080/02331934.2020.1808646.
 Tykhonov Well-posedness and Convergence Results for
Contact Problems with Unilateral Constraints Technologies 2021, 9, 1,
p. 1-25,
https://dx.doi.org/10.3390/technologies9010001 (+M. Shillor).
 A class of Nonlinear Inclusions and Sweeping
Processes in Solid Mechanics, Acta Applicandae Mathematicae 171
(2021), paparr n°16, 26 pp (+ F. Nacry).
 https://doi.org/10.1007/s10440-020-00380-4
 Well-posedness of Minimization Problems in Contact
Mechanics, Journal of Optimization Theory and
Applications (JOTA), 188 (2021), 650-672 (+Y. Xiao)
https://doi.org/10.1007/s10957-020-01801-y (+ Y. Xiao).
 Tykhonov Triples and Convergence Results for
Hemivariational Inequalities, Nonlinear Analysis: Modelling and
Control , 26 (2021), 271-292 (+ R. Hu, Y. Xiao).
 Optimal Control of Differential Quasivariational
Inequalities with Applications in Contact Mechanics,Journal of Mathematical Analysis
and Applications, 493 (2021), Paper n°124567, 23pp (+ J.
Bollati, D.A. Tarzia). https://doi.org/10.1016/j.jmaa.2020.124567.
 Convergence Results for Elliptic
Variational-Hemivariational Inequalities, Advances in Nonlinear Analysis 10 (2021), 2-23 (+ R. Hu, Y. Xiao).
 Tykhonov triples, Well-posedness and Convergence
Results,Carphatian Journal of Mathematics, 37 (2021), 135-143
(+ Y. Xiao).
 Tykhonov Triples and Convergence Results for
History-dependent Variational Inequalities, ITM Web of Conferences 34, 01006 (2020) Third ICAMNM 2020,
https://doi.org/10.1051/itmconf/20203401006.
 Tykhonov Well-posedness of a Rate-type Constitutive
Law, Mechanics Research Communications, 108 (2020), 103566,
https://doi.org/10.1016/j.mechrescom.2020.10356.
 A Tykhonov-type well-posedness concept for elliptic
hemivariational inequalities, Zeitschrift fur Angewandte
Mathematik und Physik (ZAMP), 71 (2020), paper n°120, 17 pp. (+ R. Hu,
Y. Xiao). https://doi.org/10.1007/s00033-020-01337-1.
 Tykhonov Well-posedness of Split Problems, Journal of Inequalities and
Applications 153 (2020), paper n°153, 29 pp (+ Q. Shu, Y. Xiao)
https:// doi.org/10.1186/s13660-020-02421-w.
 
 Convergence Results for Optimal Control Problems
Governed by Elliptic Quasivariational Inequalities, Numerical Functional Analysis and Optimization 41 (2020), 1326-1351 (+
D.A. Tarzia).
 On the Tykhonov Well-posedness of an Antiplane Shear
Problem, Mediterranean Journal of
Mathematics, 17 (2020), paper n°150, 21 pp (+
D.A. Tarzia). https://doi.org/10.1007/s00009-020-01577-5.
 Generalized Penalty Method for Semilinear
Differential Variational Inequalities, Applicable Analysis, 101 (2020), 437-453 (+L. Li, L. Lu)    
           
https://doi.org/10.1080/00036811.2020.1745780.
 Tykhonov Well-posedness of a Viscoplastic Contact
Problem, Journal of Evolution Equations and Control Theory 9 (2020), 1167-1185
(+ Y. Xiao).
 Tykhonov Well-posedness of a Frictionless Unilateral
Contact Problem, Mathematics and Mechanics of Solids 25 (2020), 1294-1311 (+ Z. Liu, Y.
Xiao).
 Convergence and Optimization Results fora
History-dependent Variational Problem, Acta Applicandae Mathematicae 169 (2020) 157-182 (+ A. Matei).
 Solvability and Optimization for a Class of Mixed
Variational Problems, Optimization, 69 (2020), 1097-1116 (+ A. Matei).
 Optimal Control for a Class of Mixed Variational
Problems, Journal of Applied Mathematics and Physics (ZAMP) 70 (2019) Art. 127,
17 pp. (+ A. Matei, Y. Xiao).
 On the Well-posedness Concept in the Sense of
Tykhonov, Journal of Optimization Theory and Applications. 183 (2019), 139-157 (+
Y. Xiao).
 Tykhonov Well-posedness of Elliptic
Variational-Hemivariational Inequalities, Electronic Journal of Differential Equations, Paper No. 64 (2019), 19
pp. (+ Y. Xiao).
 Optimization Problems for a Viscoelastic Frictional
Contact Problem with Unilateral Constraints, Nonlinear Analysis Series B: Real Word Applications 50 (2019), 86-103 (
+ Y. Xiao, M. Couderc).
 Convergence of Solutions to History-dependent
Variational-Hemivariational Inequalities, Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM),
https://doi.org/10.1002/ zamm.201800292 (+ Y. Xiao).
 W. Han and M. Sofonea, Convergence Analysis of
Penalty Based Numerical Methods for Constrained Inequality Problems, Numerische Mathemätik 142 (2019), 917-940 (+ W. Han).
 Generalized Penalty Method for Elliptic
Variational-Hemivariational Inequalities, accepted for publication dans Applied Mathematics and
Optimization, https://doi.org/10.1007/ s00245-019-09563-4.
 Boundary Optimal Control of a Nonsmooth Frictionless
Contact Problem, Computers and Mathematics with Applications 78 (2019), 152-165 (+ Y.
Xiao).
 On the Optimal Control of Variational-Hemivariational
Inequalities,Journal of Mathematical Analysis and Applications 475 (2019), 364-384
(+ Y. Xiao).
 On a Penalty Method for Unilateral Contact
Problemwith Non-monotone Contact Condition,Journal of Computational and Applied Mathematics 356 (2019), 293-301 (+
W. Han, S. Migorski).
 Time-dependent Inclusions and Sweeping Processes in
Contact Mechanics,Journal of Applied Mathematics and Physics (ZAMP) 70 (2019) Art. 39, 19
pp. (+ S. Adly).
 Numerical Analysis of Hemivariational Inequalities in
Contact Mechanics, Acta Numerica (2019), 175-286 (+ W. Han).
 Well-posedness of history-dependent sweeping
processes, SIAM Journal of Mathematical Analysis 51 (2019), 1082-1107 (+ S.
Migorski, S. Zeng).
 Unique solvability and exponential stability of
differential hemivariational inequalities, Applicable Analisis, 99 (2020), 2489-2506. (+ X. Li, Z. Liu).
 Optimization Problems for Elastic Contact Models with
Unilateral Constraints, Journal of Applied Mathematics and Physics (ZAMP) 70 (2019) Art. 1, 17
pp. (+ Y. Xiao, M. Couderc).
 History-dependent Inequalities for Contact Problems
with Locking Materials, Journal of Elasticity 134 (2019), 127-148.
 Optimal Control of Variational-Hemivariational
Inequalities in Reflexive Banach Spaces, Applied Mathematics and Optimization 79 (2019), 621-646.
 Convergence Results for Primal and Dual
History-dependent Quasivariational Inequalities, Proceedings of the Royal Society of Edinburgh - Section A, Mathematics
149 (2019), 471-494. (+ A. Benraouda).
 A Nonsmooth Static Frictionless Contact Problem with
Locking Materials, Analysis and Applications 6 (2018), 851-874.
 A Class of Optimization Problems with Applications in
Contact Mechanics, Revue Roumaine de Mathématiques Pures et Appliquées 63
(2018), 547-564.
 An Elastic Frictional Contact Problem with Unilateral
Constraint, Mediterranean Journal of Mathematics, 15 (2018), Art 195, 18 pp. (+ M.
Couderc).
 Convergence Results and Optimal Control for a Class
of Hemivariational Inequalities, SIAM Journal of Mathematical Analysis 50 (2018), 4066-4086.
 Model and Analysis for Quasistatic Frictional Contact
of a 2D Elastic Bar, Electronic Journal of Differential Equations, Paper No. 107 (2018), 19
pp (+ M. Shillor) .
 Numerical Modelling of a Dynamic Contact Problem with
Normal Damped Response and Unilateral Constraint,Journal of Theoretical and Applied Mechanics 56 (2018), 483-496 (+ M.
Barboteu, Y. Ouafik ).
 Numerical Analysis of Stationary
Variational-Hemivariational Inequalities, Numerische Mathemätik} 139 (2018), 563-592 (+ W. Han, D. Danan).
 Differential Quasivariational Inequalities in Contact
Mechanics, Mathematics and Mechanics of Solids 24 (2019), 845-861 (+ Z. Liu).
 A Penalty Method for History-dependent
Variational-Hemivariational Inequalities, Computers and Mathematics with Applications 75 (2018), 2561-2573 (+ S.
Migorski, W. Han).
 Analysis of a Rate-and-state Friction Problem with
Viscoelastic Materials, Electronic Journal of Differential Equations, Paper No. 299 (2017), 17
(+ F. Patrulescu).
 Analysis and Control of a Nonlinear Boundary Value
Problem, Nonlinear Analysis : Modelling and Control} 22 (2017), 841-860 (+ H.
Hechaichi) .
 A Mixed Variational Formulation of a Contact Problem
with Wear, Acta Applicandae Mathematicae 153 (2018), 125-146 (+ F. Patrulescu, A.
Ramadam).
 Nonsmooth Dynamic Frictional Contact of a
Thermoviscoelastic Body, Applicable Analysis} 97 (2018), 1228-1245 (+ S. Migorski, A. Ochal, M.
Shillor).
 Optimal Control of a Two-dimensional Contact Problem,
                Applicable Analysis 97 (2018), 1281-1298 (+ A. Benraouda, H.
Hechaichi).
 Subdifferential Inclusions for Stress Formulations of
Unilateral Contact Problems, Mathematics and Mechanics of Solids 23 (2018), 392-410 (+ K. Bartosz).
 Model and Simulations for Quasistatic Frictional
Contact of a Linear 2D Bar, Journal of Theoretical and Applied Mechanics 55 (2017), 897—910
(+ M. Barboteu, N. Djehaf, M. Shillor).
 Analysis of a General Dynamic History-dependent
Variational-Hemivariational Inequality, Nonlinear Analysis Series B: Real World Applications}, 36(2017),
69-88
(+ W. Han, S. Migórski).
 Numerical Analysis
of Elliptic Hemivariational
Inequalities, SIAM Journal of Numerical Analysis 55 (2017), 640-663 (+ W. Han, M
Barboteu).
 Convergence Results for Elliptic
Quasivariational,
Inequalities, Journal of Applied
Mathematics and Physics (ZAMP), 68 (2017), Art.10, 11 pp. DOI:
10.1007/s00033-016-0750-z, à
paraître (+ A. Benraouda).
 A Mixed Variational Formulation for  a 
Piezoelectric
Frictional Contact Problem,IMA Journal Applied 82 (2017), 334-354 (+ A.
Matei).
 A Class of Variational-Hemivariational Inequalities
in Reflexive
Banach Spaces,Journal of Elasticity 127(2017), 151-178 (+ S. Migórski, A.
Ochal).
 Modelling and Analysis of a Contact Problem for a
Viscoelastic rod, Journal of Applied
Mathematics and Physics (ZAMP), 67 (2016), Art. 127, 21 pp. DOI
10.1007/s00033-016-0718-z, à
paraître ( + K. Bartosz).
 A Convergence Result for History-dependent
Quasivariational
Inequalities, Applicable Analysis 96(2017),2635-2651(+ A.
Benraouda).
 A Nonlinear History-dependent Boundary Value
Problem, Quarterly of Applied Mathematics 75 (2017), 181-199(+ A. Benseghir).
 
 A Dynamic Contact Model for Viscoelastic Plates, Quarterly Journal of Mechanics and Applied Mathematics 70 (2017), 1-19
(+ K. Bartosz)
 Analysis of a Sliding Frictional Contact Problem with
Unilateral Constraint,Mathematics and Mechanics of Solids  22 (2017), 324-342  (+
Y. Souleiman)
 
 
An Evolutionary Boundary Value Problem, Mediteranean Journal of
Mathematics 13 (2016), 4463-4480 (+ A.
Benseghir).
 A Class of History-dependent
Variational-Hemivariational
Inequalities, Nonlinear Differential
Equations and Applications  23 (2016) Art. 38, 23 pp., DOI:
10.1007/s00030-016-0391-0 (+ S. Migórski).
 Analysis of a contact problem with wear and
unilateral
constraint, Applicable Analysis 95
(2016), 2602—2619 (
+ F.
Patrulescu, Y. Souleiman).
 A Viscoelastic Sliding Contact Problem with Normal
Compliance,
Unilateral Constraint and Memory Term, Mediteranean Journal of
Mathematics 13 (2016), 2863-2886 (+ Y. Souleiman).
 The Rothe Method for
Variational-HemivariationalInequalities with
applications to Contact Mechanics,SIAM Journal of 
Mathematical Analysis 48 (2016), 861-883 (+ K. Bartosz).
 A class of hemivariational inequalities for
nonstationary
Navier-Stokes equations,Nonlinear Analysis Series B:
Real World Applications 31 (2016), 257-276 (+ C. Fang, W. Han, S.
Migórski).
 Fully History-dependent Quasivariational Inequalities
in ContactMechanics, Applicable Analysis 95 (2016),
2464-2484 (+ Y. Xiao).
 
 A Class of Subdifferential Inclusions for Elastic
Unilateral
Contact Problems, Set-Valued and Variational Analysis 24
(2016), 355-379 (+ P. Kalita, S. Migórski).
 Analysis of a Contact Problem with Normal Damped
Response and
Unilateral Constraint,Journal of Applied
Mathematics and Mechanics (ZAMM) 96, (2016), 408-428 (+ M. Barboteu, D.
Danan).
 Primal and Dual Variational Formulation of a
Frictional Contact
Problem,Mediterranean Journal of
Mathematics 13 (2016), 857-872 (+ D. Danan, C. Zheng).
 Numerical Solution of a Contact Problem with
Unilateral Constraint
and History-dependent Penetration,Journal of Engineering
Mathematics,  97 (2016), 177-194 (+ M. Barboteu, W. Han).
 Analysis of a Contact Problem with Unilateral
Constraint and
Slip-dependent Friction,Mathematics and Mechanics of
Solids 21 (2016), 791-811 (+ M. Barboteu, X. Cheng).
 History-dependent Problems with Applications to 
Contact
Models for Elastic Beams,Applied Mathematics
&Optimization, 73 (2016), 71-98 (+ K. Bartosz, P. Kalita, S.
Migórski, A. Ochal).
 A Mixed Variational Problem with Applications
in Contact
Mechanics,Journal of Applied
Mathematics and Physics (ZAMP) 66 (2015), 3573-3589 (+ A. Matei).
 Numerical Analysis of History-dependent
Variational-Hemivariational Inequalities with Applications to Contact
Problems, European Journal of Applied
Mathematics, 26 (2015), 427-452 (+ W. Han, S. Migórski).
 History-dependent Mixed Variational Problems in
Contact Mechanics,Journal of Global
Optimization 61 (2015), 591-614 (+ A. Matei).
 History-dependent Variational-Hemivariational
Inequalities in
Contact Mechanics,Nonlinear Analysis Series B:
Real World Applications, 22 (2015), 604-618 (+ S. Migorski, A. Ochal).
 A Viscoelastic Contact Problem with Adhesion and
Surface Memory
Effects,Mathematical Modelling and
Analysis 19 (2014), 607-626 (+ F. Patrulescu).
 A Class of Variational-Hemivariational Inequalities
with
Applications to Elastic Contact Problems,SIAM Journal of Mathematical
Analysis 46 (2014), 3891-3912 (+ W. Han, S. Migórski).
 On the Behavior of the Solution of a Viscoplastic
Contact Problem,Quarterly of Applied
Mathematics 72 (2014), 625-647 (+ M. Barboteu, A. Matei).
 Analysis of Two Quasistatic History-dependent Contact
Models,Discrete and Continuous
Dynamic Systems - Series B 19 (2014), 2425-2445 (+ X. Cheng, S.
Migórski, A.
Ochal).
 Penalization of History-Dependent Variational
Inequalities,European Journal of Applied
Mathematics 25 (2014), 155-176 (+ F. Patrulescu).
 Numerical Analysis of History-dependent
Quasivariational
Inequalities with Applications in Contact Mechanics,ESAIM Mathematical Modelling
and Numerical Analysis (M2AN) 48 (2014), 919-942 (+ K. Kazmi, M.
Barboteu, W.
Han).
 A Model of a Spring-Mass-Damper System with
Temperature-dependent
Friction,European Journal of Applied
Mathematics 25 (2014), 45-64 (+ S. Migórski, A. Ochal, M.
Shillor).
 Analysis of a Piezoelectric Contact Problem with
Subdifferential
Boundary Conditions,Proceedings of the Royal
Society of Edinburgh - Section A, Mathematics 144 (2014), 1007-1025
 (+ S. Migórski, A. Ochal).
 A Viscoplastic Contact Problem with Normal
Compliance, Unilateral
Constraint and Memory Term,Applied Mathematics &
Optimization 69 (2014), 175-198 (+F. Patrulescu, A. Farcas).
 Viscoplastic Contact Problems with Normal Compliance
and Memory
Term, IMA Journal of Applied
Mathematics 79 (2014), 1180-1200 (+ M. Barboteu, F.
Patrulescu, A. Ramadan).
 Nonlinear Problems with p(.)-growth Conditions and
Applications to
Antiplane Contact Models,Advanced Nonlinear Studies
14 (2014), 295-313 (+ M. Boureanu, A. Matei).
 Analysis of a History-dependent Frictional Contact
Problem,Applicable Analysis 93
(2014), 428-444 (+ A. Farcas).
 A viscoplastic Contact Problem with a Normal
Compliance with
Limited Penetration Condition and History-dependent
Stiffness Coefficient,Communications in Pure and
Appled Analysis 13 (2014), 371-387 (+M. Shillor).
 Modelling and Numerical Simulation of a Unilateral
Contact problem
with Slip-dependent Friction,Machine Dynamics Research 37
(2013), 15-28 (+ M. Barboteu, D. Danan)
 Analysis of a Viscoelastic Contact Problem with
Multivalued Normal
Compliance and Unilateral Constraint,Computer Methods in Applied
Mechanics and Engineering 264 (2013), 12–22 (+ W. Han, M.
Barboteu).
 History-dependent Hemivariational Inequalities with
Applications
to Contact Mechanics,Annales de l'Université de
Bucarest, Math. Series 4 (LXII) (2013), 193–212 (+ S.
Migórski, A.
Ochal).
 Asymptotic Analysis of a Quasistatic Frictional
Contact Problem
withWear,Journal of Mathematical
Analysis and Applications 401 (2013), 641–653 (+ A.
Rodriguez-Arós, J.
M.
Viño).
 A Dynamic Electro-Elastic Problem,Zeitschrift für Angewandte
Matematik und Mechanik (ZAMM) 93 (2013), 612–632 (+ K. Kazmi, M.
Barboteu, W.
Han).
 Dual Formulation of a Viscoplastic Contact Problem
with Unilateral
Constraint,Discrete and Continuous
Dynamic Systems - Series S 6 (2013), 1587–1598 (+ A. Matei).
 Analysis of Quasistatic Viscoplastic Contact Problems
with Normal
Compliance,Quarterly Journal of
Mechanics and Applied Mathematics 65 (2012), 555-579
 (+ M. Barboteu, A. Matei).
 Weak Solvability of Two Quasistatic Viscoelastic
Contact Problems,Mathematics and Mechanics of
Solids 18 (2012), 745–759 (+ S. Migórski, A. Ochal).
 An Elastic Contact Problem with Normal Compliance and
Memory Term,Machine Dynamics Research 36
(2012), 15–25 (+ M. Barboteu, F. Patrulescu, A. Ramadan).
 Analysis of a History-dependent Frictionless Contact
Problem,Mathematics and Mechanics of
Solids 18 (2012), 409–430. (+ F. Patrulescu).
 A History-dependent Contact Problem with Unilateral
Constraint,Mathematics and its
Applications 2(2012),105–111 (+A.Farcas,F. Patrulescu).
 Analysis and Numerical Solution of a Piezoelectric
Frictional
Contact Problem,Applied Mathematical
Modelling 36(2012), 4483–4501 (+M. Barboteu, W. Han, K. Kazmi).
 Analysis of a Contact Problem for
Electro-elastic-visco-plastic
Materials,Communications on Pure and
Applied Analysis 11 (2012), 1185-1203 (+M. Boureanu, A. Matei).
 The Control Variational Method for Beams in Contact
with
Deformable Obstacles,<Zeitschrift für Angewandte
Matematik und Mechanik(ZAMM), 92 (2012), 25-40  (+M. Barboteu, D.
Tiba).
 A Damageable Spring,Machine Dynamics Research 35
(2011), 82-96 (+J.C. Chipman, A roux, M. Shillor).
 A Contact Problem with Normal Compliance, Penetration
and
Unilateral Constraint Finite,Machine Dynamics Research 35
(2011), 60-69 (+M. Barboteu).
 Analysis of a Quasistatic Contact Problem for
Piezoelectric
Materials,Journal of Mathematical
Analysis and Applications, 382 (2011), 701-713 (+S. Migórski, A.
Ochal).
 History-dependent Subdifferential Inclusions and
Hemivariational
Inequalities in ContactMechanics,
 Nonlinear Analysis Series B:
Real World Applications, 12 (2011), 3384-3396
 (+S. Migórski, A. Ochal).
 History-dependent Quasivariational Inequalities
arising in Contact
Mechanics,European Journal of Applied
Mathematics 22 (2011), pp 471-491 (+A. Matei).
 Analysis of a Frictional Contact Problem for
Viscoelastic
Materials with Long Memory,Discrete and Continuous
Dynamic Systems - Series B, 15 (2011), 687-705 (+S. Migorski, A. Ochal).
 Analysis of Lumped Models with Contact and Friction,Journal of Applied
Mathematics and Physics (ZAMP), 62 (2011), 99-113 (+S. Migorski, A.
Ochal).
 Regularity of Solutions to Dynamic Contact Problems,Machine Dynamics Problems,
34 (2010), 5-13 (+M. Barboteu).
 The Control Variational Method for Elastic Contact
Problems,Annals of AOSR, Series on
Mathematics and its Applications 2 (2010), 99-122 (+D. Tiba).
 Analysis of a Dynamic Contact Problem for
Electro-viscoelastic
Cylinders,Nonlinear Analysis, Series A
: Theory, Methods & Applications,73 (2010), 1221-1238 (+S.
Migorski, A. Ochal).
 A Dynamic Frictional Contact Problem for
Piezoelectric Materials,Journal of Mathematical
Analysis and Applications} 361 (2010), 161-176 (+S. Migorski, A. Ochal).
 Variational Analysis of Static Frictional Contact
Problems for
Electro-elastic Materials,Mathematische Nachrichten
283 (2010), 1314-1335 (+S. Migorski, A. Ochal).
 A Dynamic Elastic-visco-plastic Unilateral Contact
Problem with
Normal Damped Response and Coulomb Friction,European Journal of Applied
Mathematics 21 (2010), 229-251 (+. C. Eck, J. Jarusek).
 Weak solvability of Antiplane Frictional
ContactProblems for
Elastic Cylinders,Nonlinear Analysis Series B:
Real World Applications 11 (2010), 172-183 (+ S. Migórski, A.
Ochal).
 On the Solvability of Dynamic Elastic-visco-plastic
Contact
Problems with Adhesion,Annals of AOSR, Series on
Mathematics and its Applications1 (2009), 191-214 (+ J. Jarušek).
 Solvability of a Dynamic Contact Problem between
aPiezoelectric
Body and a Conductive Foundation,Applied Mathematics and
Computation 215 (2009), 2978-2991 (+ M. Barboteu).
 An Evolution Problem in Nonsmooth
Elasto-Viscoplasticity,Nonlinear Analysis Series A:
Theory, Methods & Applications 71 (2009) 2766-2771 (+ S.
Migórski,
A. Ochal).
 The Control Variational Method for Contact of
Euler-Bernoulli
Beans,Bulletin of the Transilvania
University of Brasov, Series III : Mathematics,Informatics, Physics 2
(2009), 127-136 (+ D. Tiba).
 Analysis and Numerical Approach of a Piezoelectric
Contact Problem,Annals of AOSR, Series on
Mathematics and its Applications 1(2009), 7-30. (+ M. Barboteu).
 Modelling and Analysis of the Unilateral Contact of a
Piezoelectric Body with a Conductive Support,Journal of Mathematical
Analysis and Applications, 358 (2009), 110-124 (+ M. Barboteu).
 Modeling and Analysis of an Antiplane Piezoelectric
Contact
Problem,Mathematical Models and
Methods in Applied Sciences(M3AS) 19 (2009), 1295-1324 (+ S.
Migórski,
A. Ochal).
 Quasistatic Adhesive Contact of Piezoelectric
Cylinders,Nonlinear Analysis :
Modelling and Control 14 (2009), 123-142 (+ L. Chouchane).
 Solvability of Dynamic Antiplane Frictional Contact
Problems for
Viscoelastic Cylinders,Nonlinear Analysis 70
(2009), 3738-3748 (+ S. Migórski, A. Ochal).
 Weak Solvability of a Piezoelectric Contact Problem,European Journal of Applied
Mathematics 20 (2009), 145-167 (+ S. Migórski, A. Ochal).
 Contact with Adhesion between a Deformable Body and a
Foundation,The Australian Journal of
Mathematical Analysis and Applications 5 (2008), Art 9, 11 pages (+ B.
Teniou).
 Evolutionary Variational Inequalities with
Application in the
Study of Antiplane Frictional Contact Problems,Mathematical Modelling and
Civil Engineering, 3 (2008), 32-39.
 A Dynamic Piezoelectric Contact Problem,Machine
Dynamics Problems
32 (2008), 23-32
 (+ M. Barboteu).
 Analysis of an Antiplane Contact Problem with
Adhesion for
Electro-viscoelastic Materials,Nonlinear Analysis :
Modelling and Control 137 (2008), 379-395 (+ L. Chouchane, L. Selmani).
 Analysis of a Dynamic Elastic-viscoplastic Contact
Problem with
Friction,Discrete and Continuous
Dynamic Systems - Serie B, 10 (2008), 887-902 (+ S. Migorski, A. Ochal).
 Integrodifferential Hemivariational Inequalities with
Applications
to Viscoelastic Frictional Contact,Mathematical Models and
Methods in Applied Sciences (M3AS). 18 (2008), 271-290
 (+ S. Migorski, A. Ochal).
 Analysis of a Frictional Contact Problem with
Adhesion,Acta Mathematica Universitas
Comenianae 77 (2008), 181-198 (+ Z. Lerguet, S. Drabla).
 A Model for a Magnetorheological Damper,Mathematical and Computer
Modelling, 48 (2008), 56-68 (+ J. Bajkowski, J. Nachman, M. Shillor).
 A Fixed Point Result with Applications in the Study
of
Viscoeplastic Frictionless Contact Problems,Communications on Pure and
Applied Analysis 7 (2008), 645-658 (+ C. Avramescu, A Matei).
 On the Solvability of Dynamic Elastic-visco-plastic
Contact
Problems,Zeitschrift für
Angewandte Matematik und Mechanik (ZAMM) 88 (2008), 3-22 (+ J.
Jarušek).
 Analysis of the Dependence between a Temperature and
Working
Parameters of the MR Damper,Mechanics 26 (2007), 149-155 (+J. Bajkowski, M.
Bajkowski, W. Grzesikiewicz, M. Shillor, R. Zalewski).
 Numerical Analysis of a Frictional Contact Problem
for
Viscoelastic Materials with Long-term Memory,Numerische Mathemätik, 198
(2007), 327-358 (+ A. D. Rodriguez-Aros, J. M.Viaño).
 Analysis of an Antiplane Electro-elastic Contact
Problem, Advances in Mathematical
Sciences and Applications 17 (2007), 385-400 (+ M. Dalah, A. Ayadi).
 A Frictional Contact Problem for an
Electro-Viscoelastic Body,Electronic Journal of
Differential Equations 170 (2007), 1-16 (+ Z. Lerguet, M. Shillor).
 Antiplane Frictional Contact of Electro-viscoelastic
Cylinders,Electronic Journal of
Differential Equations 161 (2007), 1-14 (+ M. Dalah).
 An Electro-viscoelastic Contact Problem with Adhesion,Dynamics of Continuous,
Discrete and Impulsive Systems, Series A: Mathematical Analysis, 14
(2007), 577-591 (+ R. Arhab).
 Analysis of Two Dynamic Frictionless Contact Problems
for
Elastic-visco-plastic Materials,Electronical Journal of
Differential Equations, 55 (2007), 1-17 (+ Y. Ayyad).
 An Electro-viscoelastic Frictional Contact Problem
with Damage,Applicable Analysis, 86
(2007), 503-518 (+ R. Tarraf).
 A Frictionless Contact Problem for
Electro-elastic-visco-plastic
Materials,Computer Methods in Applied
Mechanics and Engineering, 196 (2007), 3915-3926 (+ W. Han, K. Kazmi).
 On a Dynamic Contact Problem for
Elastic-visco-plastic Materials,Applied Numerical
Mathematics, 57 (2007), 498-509 (+ W. Han).
 A Model for Adhesive Frictional Contact,Machine Dynamics Problems,
30 (2006),158-168 (+ Z. Lerguet).
 Analysis of Electro-elastic Frictionless Contact
Problems with
Adhesion,Journal of Applied
Mathematics, Art. ID. 64217, 25 pages (+ R. Arhab, R. Tarraf,).
 Viscoelastic Frictionless Contact Problems with
Adhesion,Journal of Inequalities and
Applications, 2006, Art. ID. 36130, 22 pages (+ M. Selmani).
 Numerical Approximation of a Viscoelastic Frictional
Contact
Problem,C. R. Acad. Sci. Paris,
Série II Méc., 334 (2006), 279-284 (+ A. D.
Rodríguez-Arós, J. M.Viaño).
 An Elastic Contact Problem with Adhesion and Normal
Compliance,Journal of Applied Analysis,
12 (2006), 17-34 (+ A. Matei).
 An Antiplane Contact Problem for Viscoelastic
Materials with
Long-Term Memory,Mathematical Modelling and
Analysis, 11 (2006), 213-228 (+C. Niculescu, A. Matei).
 A Piezoelectric Contact Problem with Normal
Compliance,Applicaciones Mathematicae,
32 (2005), 425-442 (+Y. Ouafik).
 Numerical Analysis of a Quasistatic Sliding Contact
Problem with
Wear,Journal of Concrete and
Applicable Mathematics, 3 (2005),55-74 (+ J. R.
Fernández-García,
J. M. Viaño).
 Elastic Frictionless Contact Problems with Adhesion,Advances in Mathematical
Sciences and Applications 15 (2005), 49-68 (+T.-V. Hoarau-Mantel).
 A Dynamic Viscoelastic Contact Problem with Normal
Compliance and
Damage,Finite Elements in Analysis
and Design, 42 (2005)1-24 (+ M. Campo, J.R.
Fernández-García, W. Han).
 A Class of Integro-Differential Variational
Inequalities with
Applications to Viscoelastic Contact,Mathematical and Computer
Modelling, 41 (2005), 1355-1369 (+ A. D.Rodríguez-Arós,
J.
M. Viaño).
 A Mixed Variational Formulation for the Signorini
Frictionless
Problem in Viscoplasticity,Ann. Sci. Univ. Ovidius
Constanta, 12(2004), 157-170 (+ A. Matei).
 Quasistatic Frictional Contact of a Viscoelastic
Piezoelectric
Body,Advances in Mathematical
Sciences and Applications 14 (2004), 613-631(+ El H. Essoufi).
 Stress Formulation for Frictionless Contact of an
Elastic-perfectly-plastic Body,Applicable Analysis, 83
(2004), 1157-1170 (+ N. Renon, M. Shillor).
 A Piezoelectric Contact Problem with Slip Dependent
Coefficient of
Friction,Mathematical Modelling and
Analysis, 9 (2004), 229-242 (+ El H. Essoufi).
 A Convergence Result for Evolutionary Variational
Inequalities and
Applications to Antiplane Frictional Contact Problems,Applicaciones Mathematicae,
31 (2004), 55-67 (+ M. Ait Mansour).
 Creep Formulation of a Quasistatic Frictional Contact
Problem,Advances in Nonlinear
Variational Inequalities, 7 (2004), 1-27 (+T.-V. Hoarau-Mantel, J. M.
Viaño & A. D. Rodriguez-Aros).
 A Class of Evolutionary Variational Inequalities with
Volterra-type Integral Term,Mathematical Models and
Methods in Applied Sciences (M3AS), 14 (2004), 555-577 (+ A. D.
Rodríguez-Arós, J.
M. Viaño).
 A Quasistatic Viscoplastic Contact Problem with
Normal Compliance
and Friction,IMA Journal of Applied
Mathematics, 69 (2004),463-482 (+ A. Amassad, C. Fabre).
 Numerical Analysis of a Frictionless Viscoelastic
Contact Problem
with Normal Damped Response,Computers et Mathematics
with Applications, 47 (2004), 549-568 (+ J. R. Fernandez-Garcia).
 Quasistatic Viscoelastic Contact with Friction and
Wear Diffusion,Quart. Appl. Math,. 62
2004), 379-399 (+ M. Shillor, J. J.Telega).
 Dynamic Frictionless Contact with Adhesion,Journal of Applied
Mathematics and Physics (ZAMP), 55 (2004), 32-47 (+ O. Chau, M.
Shillor).
 On the Frictionless Unilateral Contact of Two
Viscoelastic
Bodies,Journal of Applied
Mathematics, 11 (2003), 575-603(+ M. Barboteu, T.-V.Hoarau-Mantel).
 Analysis of Viscoelastic Contact with Normal
Compliance,
Friction and Wear Diffusion,C.R. Acad. Sci. Paris, Série
II Méc, 331(2003), 395-400 (+ M. Shillor, J. J. Telega).
 Analysis and Numerical Simulations of a Dynamic
Contact
Problem with Adhesion,Mathematical and Computer
Modelling, 37(2003), 1317-1333 (+ J. R. Fernández-García,
M. Shillor).
 Variational and Numerical Analysis of a Quasistatic
Viscoelastic Contact Problem with Adhesion,Journal of Computational and
Applied Mathematics, 159 (2003), 431-465 (+ O. Chau, J. R.
Fernández-García, M. Shillor ).
 Creep Formulation of the Signorini Frictionless
Contact,Advances in Nonlinear
Variational Inequalities, 6 (2003), 23-43 (+ A. D. Rodriguez-Aros, J.
M. Viaño).
 Variational and Numerical Analysis of a Dynamic
Frictionless
Contact Problem with Adhesion,Journal of Computational and
Applied Mathematics, 156 2003), 127-157 (+ O. Chau, J. R
Fernández-García, W. Han ).
 Variational and Numerical Analysis of the Signorini's
Contact Problem in Viscoplasticity with Damage,Journal of Applied
Mathematics, 2 (2003), 87-114 (+ J. R. Fernández-García).
 A Fixed Point Result for Operators Defined on Spaces
of
Vector Valued Continuous Functions,Ann. Univ. Craiova,
Math-Info 29(2002), 19-22 (+ A. Matei).
 Viscoelastic Sliding Contact Problems with Wear,Mathematical and Computer
Modelling, 36 (2002), 861-874 (+ C. Ciulcu, T.-V. Hoarau-Mantel).
 Elastic Antiplane Contact Problem with Adhesion,Journal of Applied
Mathematics and Physics ( ZAMP) 53 (2002), 962-972(+ A. Matei)
 A Viscoelastic Frictionless Contact Problem with
Normal
Compliance and Adhesion,Ann. Univ Bucarest, Math. 51
(2002), 131-142 (+ N. Hemici, B.Awbi)
 Numerical Analysis of a Bilateral Frictional Contact
Problem
for Linearly Elastic Materials,IMA Journal of Numerical
Analysis, 22 (2002), 407-436 (+ M. Barboteu, W. Han).
 Quasistatic Frictional Problems for Elastic and
Viscoelastic
Materials,Applications of Mathematics,
47 (2002), 341-360 (+ O. Chau, D. Motreanu)
 A Frictionless Contact Problem for
Elastic-Visco-Plastic
Materials with Normal Compliance and Damage,Computer Methods in Applied
Mechanics and Engineering, 191 (2002), 5007-5026 (+ O. Chau, J. R.
Fernández-García, W. Han)
 Quasistatic elastic-visco-plastic problems with
friction,Ann. Univ. Bucarest , 51
(2002), 37-52 (+ L. Jianu, A. Matei).
 Elastic Beam in Adhesive Contact, Int. J. Solids and
Structures, 39 (2002), 1145-1164 (+ W. Han, K. Kuttler, M. Shillor).
 A Dynamic Frictional Contact Problem with 
Normal
Damped Response,Acta Applicandae
Mathematicae , 71 (2002), 159-178 (+ O. Chau, W. Han).
 A Frictionless Contact Problem for Viscoelastic
Materials,Journal of Applied
Mathematics, 2 (2002), 1-21 (+ M. Barboteu, W. Han).
 A Quasistatic Contact Problem with Slip Dependent
Coefficient of Friction for Elastic Materials,Journal of Applied Analysis,
8 (2002) 59-80, (+ C. Corneschi, T.-V. Hoarau-Mantel).
 A Frictionless Contact Problem for
Elastic-Viscoplastic
Materials with Normal Compliance,Numerische Mathemätik, 90
(2002), 689-719,  (+ J. R. Fernández-García, J. M.
Viaño).
 Variational Analysis of a Frictional Contact Problem
for the
Viscoelastic Bodies,Intern. Math. Journal, 1
(2002), 333-348 (+ B. Awbi, O. Chau).
 Analysis and Numerical Computation in the Study of
Pre-stressed Composite Assemblies,Rev. Roum. Sci. Tech.-Méc.
Appl., 46 (2001) 53-74 (+ F. Martinez, J. M. Segura).
 A Viscoelastic  Frictionless Contact Problem
with
Adhesion,Applicable Analysis , 80
(2001), 233-255 (+ L. Jianu, M. Shillor).
 On the Signorini Frictionless Contact Problem for
Linear
Viscoelastic Materials,Applicable Analysis, 80
(2001), 177-199 (+ A. Matei, V. V. Motreanu).
 Differential Inclusions arising in Contact Problems
with
Elastic-Visco-Plastic materials,Ann. Univ. Craiova,
Math-Info. 28 (2001), 67-78 (+ A. Stanca).
 Variational and Numerical Analysis of a Quasistatic
Viscoelastic Problem with Normal Compliance, Friction and
Damage,Journal of Computational and
Applied Mathematics, 137 (2001), 377-398 (+ W. Han, M. Shillor).
 Variational and Numerical Analysis of a Frictionless
Contact
Problem for Elastic-Viscoplastic Materials with Internal
State Variable,Quart. J. Mech. Appl. Math.,
54 (2001), 501-522 (+ J. R. Fernández-García, W. Han, J.
M. Viaño).
 Time-dependent Variational Inequalities for
Viscoelastic
Contact Problems,Journal of Computational and
Applied Mathematics, 136 (2001), 369-387 (+ W. Han).
 Numerical Analysis of a Contact Problem in Rate-type
Viscoplasticity,Numerical Functional
Analysis and Optimization, 22 (2001), 505-527 (+ J. Chen, W. Han).
 Variational Analysis of Quasistatic Viscoplastic
Contact
Problems with Friction,Communications in Applied
Analysis, 5 (2001), 135-151 (+ M. Shillor).
 A Quasistatic Antiplane Contact Problem With Slip
Dependent
Friction,Advances in Nonlinear
Variational Inequalities, 4 (2001), 1-21 (+ A. Matei, V. V. Motreanu).
 Analysis of an Elastic Contact Problem with Slip
Dependent
Coefficient of Friction,Mathematical Inequalities
& Applications, 4 (2001), 465-479 (+ C. Ciulcu, D. Motreanu).
 Numerical Analysis and Simulations of Quasistatic
Frictionless Contact Problems,Int. J. Appl. Math. and
Comp. Sci., 11 (2001), 205-222 (+ J. R. Fernández-García,
W. Han, M. Shillor).
 Quasistatic Frictional Contact and Wear of a Beam,Dynamics of Continuous,
Discrete and Impulsive Systems, 8 (2001), 201-218 (+ M. Shillor, R.
Touzani).
 Analysis and Approximation of a Viscoelastic Contact
Problem
with Slip dependent Friction,Dynamics of Continuous,
Discrete and Impulsive Systems, 8 (2001), 153-174 (+ O. Chau, W. Han).
 A Class of Quasivariational Inequalities with
Applications
to Contact Problems,Advances in Nonlinear
Variational Inequalities, 4(2001), 1-22 (+ O. Chau, D. Motreanu).
 Dual Formulation of a Quasistatic Viscoelastic
Contact
Problem with Tresca's Friction Law,Applicable Analysis, 79
(2001), 1-20 (+ B. Awbi, M. Shillor).
 A Nonlinear Evolution Inclusion in Perfect Plasticity
with
Friction,Acta Math. Univ. Comenianae,
LXX (2001), 1-14(+ A. Amassad, M. Shillor).
 A Quasistatic Frictionless Contact Problem with
Normal
Compliance,Ann. Univ. Craiova,
Math-Info. 27 (2000), 43-56 (+ A. Matei).
 Numerical Analysis of a Class of Evolution Systems
Arising
in Viscoplasticity,Computational and Applied
Mathematics, 19 (2000),279-306 (+ J. Chen, W. Han).
 Numerical Analysis of a Quasistatic Problem of
Sliding
Frictional Contact with Wear,Methods and Applications of
Analysis, 7 (2000) 687-704 (+ J. Chen, W. Han).
 A Viscoelastic Contact Problem with Normal Damped
Response
and Friction,Annales Polonici
Mathematici, LXXV (2000), 233-24(+ B. Awbi, El H. Essoufi).
 Dynamic Frictionless Contact Problems with Normal
Compliance,Int. J. Differ. Equ. Appl. 1
(2000), 335-361(+ O. Chau, El H. Essoufi, W. Han).
 Analyse numérique d'un problème
élasto-viscoplastique
de
contact sans frottement avec compliance normale,C. R. Acad. Sci. Paris,
Serie I Math., 331 (2000), 323-328 (+ J. R.
Fernández-García, J. M.
Viano).
 A Convergence Result in the Study of Frictionless
Viscoplastic Contact Problems,Rev. Roum. Math. Pures et
Appl., 45 (2000),343-351.
 Analysis of a Quasistatic Viscoelastic Problem with
Friction
and Damage,Adv.  Math. Sci. Appl.,
10 (2000), 173-189(+ M. Rochdi, M. Shillor).
 Quasivariational Inequalities and Applications in
Frictional
Contact Problems with Normal Compliance,Adv. Math. Sci. Appl.,
10(2000), 103-118 (+ D. Motreanu).
 Numerical Analysis of a Nonlinear Evolutionary 
System
with Applications in Viscoplasticity,SIAM Journal of Numerical
Analysis, 38 (2000), 1171-1199 (+ J. Chen, W. Han).
 Evolutionary Variational Inequalities Arising in
Viscoelastic Contact Problems,SIAM Journal of Numerical
Analysis, 38 (2000), 556-579 (+ W. Han).
 Numerical Analysis of a Frictionless Contact Problem
for
Elastic-Viscoplastic Materials,Computer Methods in Applied
Mechanics and Engineering, 190 (2000), 179-191 (+ W. Han).
 Analysis of a Quasistatic Displacement-Traction
Problem for
Viscoelastic Materials,Mathematical and Computer
Modelling, 32(2000), 453-464 (+ O. Chau, L. Selmani).
 Abstract Evolution Equations for Viscoelastic
Frictional
Contact Problems,Journal of Applied
Mathematics and Physics (ZAMP), 51(2000), 128--235 (+ B. Awbi, M.
Rochdi).
 Entropy Solutions in the Study of Antiplane Shear
Deformations for Elastic Solids,Mathematical Models and
Methods in Applied Sciences (M3AS), 10 (2000),96-126 (+ F. Andreu, J.
M. Mazon).
 A Quasistatic Viscoelastic Contact Problem with
Friction, Int. J. Engng. Sci., 38 (2000), 1517--1533 (+ M.
Shillor).
 Evolutionary Variational Inequalites arising in
Quasistatic
Frictional Problems for Elastic Materials,Abstract and Applied
Analysis, 4 (1999), 255-279 (+ D. Motreanu).
 Analysis and Numerical Approximation of an Elastic
Frictional Contact Problem with Normal Compliance,Applicationes Mathematicae,
26 (1999), 415-435 (+ W. Han).
 A Contact Problem for Bingham Fluid with Friction,Applicable Analysis, 72
(1999), 469-484 (+ B. Awbi, M. Shillor).
 Variational Analysis of a Frictional Contact Problem
for the
Bingham Fluid,Int. J. Appl. Math. and
Comp. Sci., 9 (1999), 101-115 (+ B. Awbi, L. Selmani).
 Analysis of a Signorini Problem with Friction,IMA Journal of Applied
Mathematics, 62 (1999), 1-18 (+ S. Drabla).
 A Quasistatic Contact Problem with Slip Dependent
Coefficient of Friction,Math. Meth. Appl. Sci., 22
(1999), 267-284 (+ A. Amassad, M. Shillor).
 A Quasistatic Contact Problem for an Elastic
Perfectly
Plastic Body with Tresca's Friction,Nonlinear Analysis, 35
(1999), 95-109 (+ A. Amassad, M. Shillor).
 A Quasistatic Viscoelastic Contact Problem with
Normal
Compliance and Friction,Journal of Elasticity, 51
(1998), 105-126 (+ M. Rochdi, M. Shillor).
 A Quasistatic Contact Problem with Directional
Friction and
Damped Response,Applicable Analysis, 68
(1998), 409-422 (+ M. Rochdi, M. Shillor).
 Analysis of some Frictionless Contact Problems for
Elastic
Bodies,Ann. Pol. Mat., LXIX (1998),
75-88 (+ S. Drabla, B. Teniou).
 On Rate-type Viscoplastic Problems with Linear
Boundary
Conditions,Mathematische Nachrichten,
193 (1998), 119-135(+ M. Rochdi).
 Analysis of some Nonlinear Evolution Systems arising
in
Rate-Type Viscoplasticity,Discrete and Continuous
Dynamical Systems,Special issue (1998), 55-72 (+ A. Amassad).
 A Quasistatic Contact Problem for an Elastoplastic
Rod,J. Math. Anal. Appl.
217 (1998), 579-596 (+ M. Shillor).
 Analysis of a Quasistatic Viscoplastic Problem
involving
Tresca Friction Law,Discrete and Continuous
Dynamical Systems, 4 (1998), 55-72 (+ A. Amassad).
 On Existence and Behaviour of the Solution for a
Class of
Nonlinear Evolution Systems,Rev. Roum. Math. Pures et
Appl., 42(1997), 659-667 (+ M. Rochdi).
 On a Frictionless Contact Problem for
Elastic-Viscoplastic
materials with Internal State Variables,Mathematical and Computer
Modelling, 26 (1997), 31-47 (+ S. Drabla, M. Rochdi).
 On Frictionless Contact between Two
Elastic-Viscoplastic
Bodies,Quart. J. Mech. Appl. Math.,
50 (1997), 481-496 (+ M. Rochdi).
 On a Contact Problem for Elastic-Viscoplastic Bodies,Nonlinear Analysis, Theory,
Methods and  Applications, 29 (1997), 1037-1050.
 On a Quasistatic Rate-Type Viscoplastic Problem with
Friction,Ann. Sci. Univ. Ovidius, 5
(1996), 1-12 (+ A. Amassad).
 Variational Analysis of an Elastic Problem involving
Tresca
Friction Law,Bull. Sci. Univ. Baia-Mare,
Série B, 12 (1996), 31-40(+ A. Amassad, R. Rosca).
 Sur l'existence et l'approximation numérique
de la
solution
pour un problème de
contact élastique,Acta Technica Napocensis,
37(1994), 37-46 (+ A. Nouailler, R. Touzani).
 Error Estimates of an Iterative Method for a
Quasistatic
Elastic-Visco-Plastic Problem,Applications of Mathematics,
39 (1994), 401-414 (+ I. Rosca).
 A Contractive Method in the Study of Nonlinear
Operators in
Hilbert Spaces,St. Cerc. Mat. 46 (1994),
291-301 (+ I. Rosca).
 A Monotony Method in Quasistatic Rate-Type
Viscoplasticity,Theoretical and Applied
Mechanics, 19 (1993), 39-46 (+ S. Djabi).
 Error Estimates of a Numerical Method for a Class of
Nonlinear Evolution Equations,Revista Columbiana de
Matematicas, 27 (1993), 253-265.
 A Fixed Point Method in Quasistatic Rate-Type
Viscoplasticity,Appl. Math. and Comp. Sci.,
3 (1993), 269-279 (+ S. Djabi).
 On Existence and Behaviour of the Solution in
Quasistatic
Processes for Rate-Type Viscoplastic Models,Ann. Sci. Univ. Blaise
Pascal, Sér. Math., 28 (1992), 255-271.
 Some Remarks concerning a Class of Nonlinear
Evolution
Equations in Hilbert Spaces,Ann. Sci. Univ. Blaise
Pascal, Sér. Math., 25(1990), 13-20.
 Some Remarks on the Behaviour of the Solution in
Dynamic
Processes for Rate-Type Models,Journal of Applied
Mathematics and Physics (ZAMP), 41 (1990), 656-668.
 Evolution Problems for a Class of Thermo-Viscoplastic
Materials,St. Cerc. Mat., 42 (1990),
57-72.
 Quasistatic Processes for Elastic-Visco-Plastic
Materials
with Internal State Variables,Ann. Sci. Univ. Blaise
Pascal, Sér. Math., 25 (1989), 47-60.
 A Fixed Point Method in Viscoplasticity with Strain
Hardening,Rev. Roum. Math. Pures et
Appl., 34 (1989),553-560.
 On Existence and Behaviour of the Solution of two
Uncoupled
Thermo-Elastic-Visco-Plastic Problems,Ann. Univ. Bucarest, Math.,
38 (1989), 56-65.
 On Existence and Uniqueness of the Solution of a
Dynamic
Elastic-Visco-Plastic Problem,Ann. Univ. Bucarest, Math.,
37 (1988),53-59.
 Quasistatic Processes for Elastic-Visco-Plastic
Materials,Quart. Appl. Maths., 46
(1988), 229-243 (+ I. R. Ionescu).
 On the Energetic Space for a Linear Operator,Ann. Univ. Bucarest, Math.,
35 (1986), 19-24 (+ I. R. Ionescu, I. Rosca).
 The Blocking Property in the Study of the Bingham
Fluid,Int. J. Engng. Sci. 24
(1986), 289-297 (+ I. R. Ionescu).
 Une méthode variationnelle pour une classe
d'équations non-linéaires dans les espaces de Hilbert,Bull. Math. Soc. Sci. Math.
Roumanie, 30 (1986), 47-55.
 A Variational Method in the Study of the Equation
Au+ (Ku)  f,Ann. Univ. Bucarest, Math.,
34 (1985), 52-60 (+ I. Rosca).
 A Variational Method for Nonlinear Multivalued
Operators,Nonlinear Analysis, Theory,
Methods and  Applications, 9 (1985), 259-273 (+ I. R. Ionescu, I.
Rosca).
 A Variational Formulation of a Boundary Value
Problem in the Study of the Bingham Fluid,Rev. Roum. Sci.Tech.-Méc.
Appl., 30(1985), 357-363 (+ I. R. Ionescu).
 On the existence of optimal solutions of the
optical Bloch equations,Ann. Univ. Timisoara, St.
Fiz., 20 (1982), 9-16 (+ V. Sofonea).
 Sur l'écoulement de deux fluides de Bingham
dans
une conduite,Rev. Roum. Sci. Tech.-Mec.
Appl., 27 (1982), 45-56.
 Variational Inequalities with Blocking Property,Int. J. Engrg. Sci., 20
(1982), 1001-1007.
 Sur l'écoulement de Poisseuille d'un fluide
rigide-viscoplastique de Bingham,St. Cerc. Mat. 34 (1982),
388-394.
 |  
 
 
 |