Mircea Sofonea
Professeur à l'Université de Perpignan



Chapitres de livre

 

  1. Sweeping process arguments in the analysis and control of a viscoelastic frictional contact problem,
    Deterministic and Stochastic Optimal Control and Inverse Problems, B. Jadamba, et al. (eds)., CRC Press, Boca Raton 2021, p. 170-196 (+ Y. Xiao).

  2. Optimal Control of Variational Inequalities with Applications to Contact Mechanics,
    Chapter 13 Current Trends in Mathematical Analysis and Its Interdisciplinary Applications,
    H. Dutta et al. (eds.), Springer Nature Switzerland, Basel, 2019, p. 443--487.

  3. A History-dependent Variational-Hemivariational Inequalitiy in Contact Mechanics,
    Mathematical Modelling in Mechanics, Advanced Structured Materials 69,
    F. dell'Isola et al. (eds), Springer, Berlin, 2017, p. 95-105 (+ S. Migorski).

  4. A Variational-Hemivariational Inequality in Contact Mechanics,
    Mathematical Modelling in Mechanics, Advanced Structured Materials 69,
    F. dell'Isola et al. (eds), Springer, Berlin, 2017, p.198-209 (+ W. Han, M. Barboteu).

  5. Variational Analysis of a Quasistatic Contact Problem,
    Chapter 14 in Intelligent Mathematics II : Applied Mathematics and Approximation Theory,
    G.A. Anastassiou and O. Duman (eds.), Springer, Heidelberg, 2016, p. 241-257

  6. Two History-dependent Contact Problems,
    Chapter 14 in Advances in Variational and Hemivariational Inequalities, Advances in
    Mechanics and Mathematics, Vol. 33, W. Han et al. (eds.), Springer, New York, 2015, p. 345-369
    (+ S. Migorski, A. Ochal).

  7. A Hyperelastic Dynamic Frictional Contact Model with Enedrgy-Consistent Properties,
    Chapter 10 in Advances in Variational and Hemivariational Inequalities, Advances in
    Mechanics and Mathematics, Vol. 33, W. Han et al. (eds.), Springer, New York, 2015, p. 243-270
    (+ M. Barboteu, D. Danan).

  8. Evolutionary Inclusions and Hemivariational Inequalities,
    Chapter 2 in Advances in Variational and Hemivariational Inequalities, Advances in
    Mechanics and Mathematics, Vol. 33, W. Han et al. (eds.), Springer, New York, 2015, p. 37-62
    (+ S. Migorski, A. Ochal).

  9. A Class of Mixed Variational Problems with Applications in Contact Mechanics,
    Chapter 30 in Advances in Global Optimization,  Springer Proceedings in Mathematics Statistics, Vol. 95, D. Gao et al. (eds.), Springer, New York, 2015, p. 305-314.

  10. A Class of History-dependent Inclusions with Applications to Contact Problems,
    Chapter 3 in Optimization and Control Techniques and Applications, Springer Proceedings in
    Mathematics  Statistics, Vol. 86, Honglei Xu, Kok Lay Teo, Yi Zhang (eds.), Springer, New York,
    2014, p. 45-74.

  11. Modelling of Piezoelectric Contact Problems,
    Chapter 25 in Recent Advances in Contact Mechanics, Ed. G. E. Stravoulakis, Springer, Berlin,
    2013, p. 415-431 (+ M. Barboteu).



haut